Objectives. This study was conducted to evaluate the cytokine-release
Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and
Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal growth plate. We have investigated the effects of male castration on the cell
Background. The doses of local rhBMP-2 in commercially available materials are high with known drawbacks such as inflammation and premature bone resorption. The latter can be prevented by adding bisphosphonates like zoledronic acid (ZA) but systemic ZA has side effects and patient adherence to treatment is low. In a recent study, we have shown that local co-delivery of rhBMP-2 and ZA via a calcium sulphate/hydroxyapatite (CS-HA) biomaterial can be used to regenerate both cortical and trabecular bone in a rat model of metaphyseal bone defect. Even low doses of local ZA in the biomaterial showed promising results and increased bone formation within the defect compared to the controls. A step before clinical translation of the local treatment regimen is to evaluate the in-vivo release
Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). During DS, the hip flexion angle approximates the functional range of hip motion. In some hip morphologies this femoroacetabular conflict has been shown to occur as early as 80° of hip flexion. So far in-vivo HJRF measurements have been limited to instrumented hip implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). Clearly, young adults have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since hip loading data on this subgroup of the population is lacking and performing invasive measurements would be unfeasible, this study aimed to report a personalised numerical model solution based on inverse dynamics to calculate realistic in silico HJRF values during DS. M&M. Fifty athletic males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans of the lower extremities with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model. Bone geometries, semi-automatically segmented from MRI, and corresponding markers were incorporated into the template human model by an automated nonlinear morphing. Furthermore, a state-of-the-art TLEM 2.0 dataset, included in the Anybody Managed Model Repository (v2.0), was used in the template model. The subject-specific MoCap trials were processed to compute squat motion by resolving an overdeterminate kinematics problem. Inverse dynamics analyses were carried out to compute muscle and joint reaction forces in the entire body. Resulting hip joint loads were validated with measured in-vivo data from Knee bend trials in the OrthoLoad library. Additionally, anterior pelvic tilt, hip and knee joint angles were computed. Results. A preliminary set of results (20 out of 50 subjects) was analysed. The average HJRF was 3.42 times bodyweight at the peak of DS (95% confidence interval: 2.99 – 3.85%BW). Maximal hip and knee flexion angles were 113° (109.7°–116.8°) and 116° (109.4 – 123.0°) respectively. The anterior pelvic tilt demonstrated a biphasic profile with peak value of 33° (28.1° – 38.4°). Discussion. A non-invasive and highly personalised alternative for determining hip loading was presented. Consistently higher HJR forces during DS in young adults were demonstrated as opposed to the Orthoload dataset. Similarly, knee and hip flexion angles were much higher, which could support the increase in HJRF. We can conclude that DS hip
The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results. The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant.Introduction
Method
In total knee replacement (TKR), neutral mechanical alignment (NMA) is targeted in prosthetic component implantation. A novel implantation approach, referred to as kinematic alignment (KA), has been recently proposed (Eckhoff et al. 2005). This is based on the pre-arthritic lower limb alignment which is reconstructed using suitable image-based techniques, and is claimed to allow better soft-tissue balance (Eckhoff et al. 2005) and restoration of physiological joint function. Patient-specific instrumentation (PSI) introduced in TKR to execute personalized prosthesis component implantation are used for KA. The aim of this study was to report knee kinematics and electromyography (EMG) for a number lower limb muscles from two TKR patient groups, i.e. operated according to NMA via conventional instrumentation, or according to KA via PSI. 20 patients affected by primary gonarthrosis were implanted with a cruciate-retaining fixed-bearing prosthesis with patella resurfacing (Triathlon® by Stryker®, Kalamazoo, MI-USA). 17 of these patients, i.e. 11 operated targeting NMA (group A) via convention instrumentation and 6 targeting KA (group B) via PSI (ShapeMatch® by Stryker®, Kalamazoo, MI-USA), were assessed clinically using the International Knee Society Scoring (IKSS) System and biomechanically at 6-month follow-up. Knee kinematics during stair-climbing, chair-rising and extension-against-gravity was analysed by means of 3D video-fluoroscopy (CAT® Medical System, Monterotondo, Italy) synchronized with 4-channel EMG analysis (EMG Mate, Cometa®, Milan, Italy) of the main knee ad/abductor and flexor/extensor muscles. Knee joint motion was calculated in terms of flex/extension (FE), ad/abduction (AA), and internal/external rotation (IE), together with axial rotation of condyle contact point line (CLR). Postoperative knee and functional IKSS scores in group A were 78±20 and 80±23, worse than in group B, respectively 91±12 and 90±15. Knee motion patterns were much more consistent over patients in group B than A. In both groups, normal ranges were found for FE, IE and AA, the latter being generally smaller than 3°. Average IE ranges in the three motor tasks were respectively 8.2°±3.2°, 10.1°±3.9° and 7.9°±4.0° in group A, and 6.6°±4.0°, 10.5°±2.5° and 11.0°±3.9° in group B. Relevant CLRs were 8.2°±3.2°, 10.2°±3.7° and 8.8°±5.3° in group A, and 7.3°±3.5°, 12.6°±2.6° and 12.5°±4.2° in group B. EMG analysis revealed prolonged activation of the medial/lateral vasti muscles in group A. Such muscle co-contraction was not generally observed in all patients in group B, this perhaps proving more stability in the knee replaced following the KA approach. These results reveal that KA results in better function than NMA in TKR. Though small differences were observed between groups, the higher data consistency and the less prolonged muscle activations detected using KA support indirectly the claim of a more natural knee soft tissue balance. References
We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.
Electrospinning is an advantageous technique for cartilage tissue engineering (CTE) applications due to its ability to produce nanofibers recapitulating the size and alignment of the collagen fibers present within the articular cartilage superficial zone. Moreover, coaxial electrospinning allows the fabrication of core-shell fibers able to encapsulate and release bioactive molecules in a sustained manner. Kartogenin (KTG) is a small heterocyclic molecule, which was demonstrated to promote the chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells(hBMSCs)[1]. In this work, we developed and evaluated the biological performance of core-shell poly(glycerol sebacate)(PGS)/poly(caprolactone)(PCL) aligned nanofibers (core:PGS/shell:PCL) mimicking the native articular cartilage extracellular matrix(ECM) and able to promote the sustained release of the chondroinductive drug KTG[2]. The produced coaxial aligned PGS/PCL scaffolds were characterized in terms of their structure and fiber diameter, chemical composition, thermal properties, mechanical performance under tensile testing and in vitro degradation
Falls in adults are a major problem and can lead to injuries and death. In order to better understand falls and successful recoveries, identifying kinematics,
Abstract. Purpose. The aim of this study was to assess how biomechanical gait parameters (kinematics,
The term macromolecular crowding is used to describe equilibria and
Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the
Due to the presence of megakaryocytes, platelets and clotting factors, bone marrow aspirate (BMA) tends to coagulate. For the first time, starting from our previous studies on mesenchymal vertebral stem cells, it has been hypothesized that coagulated BMA represents a safe and effective autologous biological scaffold for bone regeneration in spinal surgery. The present research involved advanced preclinical in vitro models and the execution of a pilot clinical study. Evaluation of cell morphology, growth
Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release
Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the bone fragments using a method developed in our laboratory. The growth
Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence. Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release
We developed a novel silorane-based biomaterial (SBB) for use as an orthopedic cement. SBB is comprised of non-toxic silicon-based monomers, undergoes non-exothermic polymerization, and has weight-bearing strength required of orthopedic cements. We sought to compare the antibiotic release
Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The
Tibial shaft fractures require surgical stabilization preferably by intramedullary nailing. However, patients often report functional limitations even years after the injury. This study investigates the influence of the surgical approach (transpatellar vs. parapatellar) on gait performance and patient reported outcome six months after surgery. Twenty-two patients with tibial shaft fractures treated by intramedullary nailing through a transpatellar approach (TP: n=15, age 41±15, BMI 24±3) or a parapatellar approach (PP: n=7, age 34±15, BMI 23±2) and healthy, matched controls (n=22, age 39±13, BMI 24±2) were assessed by instrumented motion analysis six months after intramedullary nailing. Short musculoskeletal function assessment questionnaire (SMFA) as well as kinematic and kinetic gait data were collected during level walking. Comparisons among approach methods and control group were performed by analysis of variance and Mann-Whitney test. Six months after surgery, knee