To propose a modified approach to measuring femoro-epiphyseal acetabular roof (FEAR) index while still abiding by its definition and biomechanical basis, and to compare the reliabilities of the two methods. To propose a classification for medial sourcil edges. We retrospectively reviewed a consecutive series of patients treated with periacetabular osteotomy and/or hip arthroscopy. A modified FEAR index was defined. Lateral center-edge angle, Sharp's angle, Tonnis angle on all hips, as well as FEAR index with original and modified approaches were measured. Intra- and inter-observer reliability were calculated as intraclass correlation coefficients (ICC) for FEAR index with both approaches and other alignments. A classification was proposed to categorize medial sourcil edges. ICC for the two approaches across different sourcil groups were also calculated. After reviewing 411 patients, 49 were finally included. Thirty-two patients (40 hips) were identified as having borderline dysplasia defined by an LCEA of 18 to 25 degrees. Intra-observer ICC for the modified method were good to excellent for borderline hips; poor to excellent for DDH; moderate to excellent for normal hips. As for inter-observer reliability, modified approach outperformed original approach with moderate to good inter-observer reliability (DDH group, ICC=0.636; borderline dysplasia group, ICC=0.813; normal hip group, ICC=0.704). The medial sourcils were classified to 3 groups upon its morphology. Type II(39.0%) and III(43.9%) sourcils were the dominant patterns. The sourcil classification had substantial intra-observer agreement (observer 4, kappa=0.68; observer 1, kappa=0.799) and moderate inter-observer agreement (kappa=0.465). Modified approach to FEAR index possessed greater inter-observer reliability in all medial sourcil patterns. The modified FEAR index has better intra- and inter-observer reliability compared with the original approach. Type II and III sourcils accounts for the majority to which only the modified approach is applicable.
The aim of the current study was to assess the reliability of the Ottawa classification for symptomatic acetabular dysplasia. In all, 134 consecutive hips that underwent periacetabular osteotomy were categorized using a validated software (Hip2Norm) into four categories of normal, lateral/global, anterior, or posterior. A total of 74 cases were selected for reliability analysis, and these included 44 dysplastic and 30 normal hips. A group of six blinded fellowship-trained raters, provided with the classification system, looked at these radiographs at two separate timepoints to classify the hips using standard radiological measurements. Thereafter, a consensus meeting was held where a modified flow diagram was devised, before a third reading by four raters using a separate set of 74 radiographs took place.Aims
Methods
Aims. The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. Methods. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system.
Aims. The aim of the study was to compare two methods of calculating pelvic incidence (PI) and pelvic tilt (PT), either by using the femoral heads or acetabular domes to determine the bicoxofemoral axis, in patients with unilateral or bilateral primary hip osteoarthritis (OA). Methods. PI and PT were measured on standing lateral radiographs of the spine in two groups: 50 patients with unilateral (Group I) and 50 patients with bilateral hip OA (Group II), using the femoral heads or acetabular domes to define the bicoxofemoral axis. Agreement between the methods was determined by intraclass correlation coefficient (ICC) and the standard error of measurement (SEm). The intraobserver reproducibility and
Aims. Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery. Methods. We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure
Aims. This aim of this study was to assess the reliability and validity of the Unified Classification System (UCS) for postoperative periprosthetic femoral fractures (PFFs) around cemented polished taper-slip (PTS) stems. Methods. Radiographs of 71 patients with a PFF admitted consecutively at two centres between 25 February 2012 and 19 May 2020 were collated by an independent investigator. Six observers (three hip consultants and three trainees) were familiarized with the UCS. Each PFF was classified on two separate occasions, with a mean time between assessments of 22.7 days (16 to 29).
When treating periprosthetic femur fractures (PPFFs) around total hip arthroplasty (THA)], determining implant fixation status preoperatively is important, since this guides treatment regarding ORIF versus revision. The purpose of this study was to determine the accuracy of preoperative implant fixation status determination utilizing plain films and CT scans. Twenty-four patients who underwent surgery for Vancouver B type PPFF were included in the study. Two joint surgeons and two traumatologists reviewed plain films alone and made a judgment on fixation status. They then reviewed CT scans and fixation status was reassessed. Concordance and discordance were recorded.
Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and
Aims. The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks. Methods. The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds. Results. The expert group achieved strong consensus in 32 out of 36 factors following the Delphi process. The RHCC used the existing Paprosky (acetabulum and femur), Unified Classification System, and American Society of Anesthesiologists (ASA) classification systems. Patients with ASA grade III/IV are recognized with a qualifier of an asterisk added to the final classification. The classification has good intraobserver and
Aims. The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Methods. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable. Results. Analysis of supine and standing radiographs resulted in significant variation for measurements of PT (p < 0.001) and AC (p = 0.005). The variation in PT correlated with the variation in AC in a limited number of patients (R. 2. = 0.378; p = 0.012). Conclusion. The significant variation in PT and AC between supine and standing radiographs suggests that it may benefit surgeons to have both radiographs when planning surgical correction of hip dysplasia. We also recommend using PACS-derived measurements of AI and SA due to the poor
Early micromotion of hip implants measured with radiostereometric analysis (RSA) is a predictor for late aseptic loosening. Computed Tomography Radiostereometric Analysis (CT-RSA) can be used to determine implant micro-movements using low-dose CT scans. CT-RSA enables a non-invasive measurement of implants. We evaluated the precision of CT-RSA in measuring early stem migration. Standard marker-based RSA was used as reference. We hypothesised that CT-RSA can be used as an alternative to RSA in assessing implant micromotions. We included 31 patients undergoing Total Hip Arthroplasty (THA). Distal femoral stem migration at 1 year was measured with both RSA and CT-RSA. Comparison of the two methods was performed with paired-analysis and Bland-Altman plots. Furthermore, the inter- and intraobserver reliability of the CT-RSA method was evaluated. No statistical difference was found between RSA and CTMA measurements. The Bland-Altman plots showed good agreement between marker-based RSA and CT-RSA. The intra- and
Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in BMD in the inferior and medial regions, with preserved BMD laterally, suggesting lateral rim loading. However, the pressfit component subsequently showed a reversal in BMD medially with recovery back towards baseline, and a continued rise in lateral BMD. This would suggest that the pressfit component begins to reload the medial bone over time, more akin to the cemented component. Analysis of postoperative radiographs revealed no pressfit component subsidence or movement up to two years postoperatively (100%
Aims. A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement. Patients and Methods. The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index. Results. The FEAR index showed excellent intraobserver and
Orientation of the native acetabular plane as defined by the transverse acetabular ligament (TAL) and the posterior labrum was measured intra-operatively using computer-assisted navigation in 39 hips. In order to assess the influence of alignment on impingement, the range of movement was calculated for that defined by the TAL and the posterior labrum and compared with a standard acetabular component position (abduction 45°/anteversion 15°). With respect to the registration of the plane defined by the TAL and the posterior labrum, there was moderate
The Vancouver classification has been shown by its developers to be a valid and reliable method for categorising the configuration of periprosthetic proximal femoral fractures and for planning their management. We have re-validated this classification system independently using the radiographs of 30 patients with periprosthetic fractures. These were reviewed by six experienced consultant orthopaedic surgeons, six trainee surgeons and six medical students in order to assess intra- and
A variety of radiological methods of measuring
version of the acetabular component after total hip replacement (THR)
have been described. The aim of this study was to evaluate the reliability
and validity of six methods (those of Lewinnek; Widmer; Hassan et
al; Ackland, Bourne and Uhthoff; Liaw et al; and Woo and Morrey)
that are currently in use. In 36 consecutive patients who underwent
THR, version of the acetabular component was measured by three independent
examiners on plain radiographs using these six methods and compared
with measurements using CT scans. The intra- and
Objectives. The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction. Materials and Methods. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (. sd. 5.2) vs 67.5 years (. sd. 5.8) (p = 0.25); body mass index (27.4 kg/m. 2. (. sd. 2.1) vs 26.9 kg/m. 2. (. sd. 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs. Results. The correlation coefficient was 0.92 (95% confidence interval (CI) 0.88 to 0.95) for intraobserver agreement and 0.88 (95% CI 0.82 to 0.94) for
Aims. Accurate placement of the acetabular component is essential in
total hip arthroplasty (THA). The purpose of this study was to determine
if the ability to achieve inclination of the acetabular component
within the ‘safe-zone’ of 30° to 50° could be improved with the
use of an inclinometer. Patients and Methods. We reviewed 167 primary THAs performed by a single surgeon over
a period of 14 months. Procedures were performed at two institutions:
an inpatient hospital, where an inclinometer was used (inclinometer
group); and an ambulatory centre, where an inclinometer was not
used as it could not be adequately sterilized (control group). We excluded
47 patients with a body mass index (BMI) of > 40 kg/m. 2. ,
age of > 68 years, or a surgical indication other than osteoarthritis
whose treatment could not be undertaken in the ambulatory centre.
There were thus 120 patients in the study, 68 in the inclinometer
group and 52 in the control group. The inclination angles of the acetabular
component were measured from de-identified plain radiographs by
two blinded investigators who were not involved in the surgery.
The effect of the use of the inclinometer on the inclination angle
was determined using multivariate regression analysis. Results. The mean inclination angle for the THAs in the inclinometer group
was 42.9° (95% confidence interval (CI) 41.7° to 44.0°; range 29.0°
to 63.8°) and 46.5° (95% CI 45.2° to 47.7°; range 32.8° to 63.2°)
in the control group (p < 0.001). Regression analysis identified
a 9.1% difference in inclination due to the use of an inclinometer
(p < 0.001), and THAs performed without the inclinometer were
three times more likely to result in inclination angles of > 50°
(odds ratio (OR) 2.8, p = 0.036). The correlation coefficient for
the
The definition of osseous instability in radiographic borderline dysplastic hips is difficult. A reliable radiographic tool that aids decision-making specifically, a tool that might be associated with instability-therefore would be very helpful for this group of patients. The aims of this study were:. (1) To compare a new radiographic measurement, which we call the Femoro-Epiphyseal Acetabular Roof (FEAR) index, with the lateral centre-edge angle (LCEA) and acetabular index (AI), with respect to intra- and
Objectives. The determination of the volumetric polyethylene wear on explanted material requires complicated equipment, which is not available in many research institutions. Our aim in this study was to present and validate a method that only requires a set of polyetheretherketone balls and a laboratory balance to determine wear. Methods. The insert to be measured was placed on a balance, and a ball of the appropriate diameter was inserted. The cavity remaining between the ball and insert caused by wear was filled with contrast medium and the weight of the contrast medium was recorded. The volume was calculated from the known density of the liquid. The precision, inter- and intraobserver reliability, were determined by four investigators on four days using nine inserts with specified wear (0.094 ml to 1.626 ml), and the intra-class correlation coefficient was calculated. The feasibility of using this method in routine clinical practice and the time required for measurement were tested on 84 explanted inserts by one investigator. Results. In order to get the mean for all investigators and determinations, the deviation between the measured and specified wear was -0.08 ml . (sd. 0.12; -0.21 to 0.11). The