Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 23 - 23
1 Nov 2018
Pattappa G Zellner J Johnstone B Docheva D Angele P
Full Access

Mesenchymal Stem Cells (MSCs) are a candidate cell type for treating osteoarthritic focal defects. In vivo, cartilage and bone marrow reside under a low oxygen tension, between 2–7% oxygen or physioxia, that has been shown to enhance MSC chondrogenesis. However, chondrogenesis is inhibited in the presence of IL-1. Here, it was hypothesized that physioxia reduces IL-1 inhibited chondrogenesis. Human MSCs (Mean age, 32 years; n = 9) were split equally for expansion under either 2% (physioxia) or 20% (hyperoxia) oxygen. Chondrogenic pellets (2 × 105 MSCs/pellet) were formed and cultured in the presence of 10 ng/ml TGF-b1 and in combination with either 0.1 or 0.5 ng/ml IL-1 under their respective expansion conditions. Pellets were assessed for their wet weight, GAG and collagen II content and evaluated histologically (Collagen X and MMP-13). Statistical analysis was performed using a Two-way ANOVA with Tukey post-hoc test, significant differences stated when p < 0.05. A significant dose-dependent IL-1 inhibition in chondrogenesis was observed for pellet wet weight and GAG content under hyperoxia (p < 0.05). Physioxia alone significantly increased wet weight, GAG and collagen II content (p < 0.05) compared to hyperoxia. A donor-dependant response was observed, whereby 80% of donors responded to physioxia and their analysis showed significant increases in wet weight and GAG content in the presence IL-1(p < 0.05). Furthermore, reduced hypertrophy marker expression (Collagen X and MMP-13) was observed under physioxia in the presence of IL-1. The molecular signalling mechanisms controlling these responses are to be investigated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 65 - 65
1 Apr 2018
Pattappa G Hofmeister I Zellner J Johnstone B Docheva D Angele P
Full Access

Osteoarthritis is a degenerative disease that results in changes in cartilage extracellular matrix. In vitro studies have shown that IL-1β inhibits cartilage formation in chondrocytes or MSCs undergoing chondrogenesis. In vivo, articular chondrocytes and bone marrow reside under hypoxic or physioxic environment (1–5% oxygen) and previous investigations have shown an increase in cartilage matrix proteins and reduced hypertrophy for MSC chondrogenesis, especially for MSCs expanded and differentiated under physioxia. Our hypothesis was that physioxic preconditioning reduces the effects of IL-1β inhibited MSC chondrogenesis.

Methods

Human MSCs (Male donors; aged 18–60 years, n = 6) were isolated from bone marrow and expanded for one passage and split into hyperoxic and physioxic MSC cultures, the latter conditions were isolated and expanded using a hypoxia controlled incubator. MSCs with or without physioxic preconditioning were aliquoted into wells of a 96-well cell culture plate in the presence of 10ng/ml TGF-β1 or in combination with either 0.1 or 0.5ng/ml IL-1ß and centrifuged to form pellets. Pellets were then differentiated under their isolation conditions. Pellets removed from culture on days 7, 14 and 21, were evaluated for wet weight, histological (DMMB staining, collagen type I, II, MMP-13 and TGF-β receptor II) and collagen type II ELISA analysis.

Results

Preconditioned MSCs demonstrated an enhanced collagen type II and GAG production undergoing chondrogenesis compared to hyperoxic pellets. In the presence of IL-1β, preconditioned MSCs reduced the inhibitory effect of IL-1ß compared to the equivalent conditions under hyperoxic, whereby there was a significant increase in wet weight, GAG and collagen type II production (p < 0.05). Furthermore, preconditioning MSCs had reduced collagen type X expression compared to hyperoxic cultures.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 920 - 930
1 Aug 2002
Liagre B Moalic S Vergne P Charissoux JL Bernache-Assollant D Beneytout JL

We describe a model which can be used for in vitro biocompatibility assays of biomaterials.

We studied the in vitro response of human osteoarthritis or rheumatoid arthritis fibroblast-like synoviocytes to Al2O3 or ZrO2 particles by analyzing the production of interleukin-1 (IL-1) and interleukin-6 (IL-6) and the metabolism of arachidonic acid via lipoxygenase and cyclo-oxygenase pathways.

Our results show that, in these cells and under our experimental conditions, Al2O3 and ZrO2 did not significantly modify the synthesis of IL-1 and IL-6 or the metabolism of arachidonic acid.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective. Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified. Materials and Methods. Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed. Results. Age-related downregulation of tenocyte marker genes (Tenomodulin), genes related to matrix modelling and remodeling (Collagen type 1, Collagen type 3, Elastin, Biglycan, Fibronectin, Tenascin C), and Transforming growth factor beta 3 (Tgfb3) were detected in tendons from HCR and LCR. Furthermore, inflammatory marker Cyclooxygenase 2 (Cox2) was downregulated, while Microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in tendons from old HCR and old LCR. No significant alteration was seen in Interleukin 6 (Il6), Interleukin 1 beta (Il1b), and Tumor necrosis factor alpha (Tnfa). Histological analysis revealed that Achilles tendons of old rats had fewer and more elongated tenocyte nuclei compared to young rats, indicating a reduced metabolic activity. Even though higher content of glycosaminoglycans as a sign of degeneration was found in tendons of old HCR and LCR, no further signs of tendinopathy were detectable in histological evaluation. Conclusions. Overall, aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue, while low intrinsic exercise capacity did not cause any changes. Even though tendinopathy was not present in any of the groups, some of the shown age-related changes correspond to single characteristics of chronic tendon disease. This study gives an insight into tendon aging and its contribution to molecular and cellular changes in Achilles tendon tissue


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 112 - 112
4 Apr 2023
Sun Y Ding Y Wu H Wu C Li S
Full Access

Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA. Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13. CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001). CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 50 - 50
2 Jan 2024
Teixeira G
Full Access

Back pain is a leading cause of disability worldwide and it is primarily considered to be triggered by intervertebral disc (IVD) degeneration (IVDD). Current treatments may improve pain and mobility, but carry high costs and fail to address IVD repair or regeneration. As no effective therapeutic approach has been proposed to restore inflamed and degenerated IVDs, there is the urgent need to clarify the key pathomechanism of IVDD, the involvement of inflammation, particularly complement activation in matrix catabolism, and how to target them towards tissue repair/regeneration. Mesenchymal stem cell (MSC)-based therapies have become the focus of several regenerative IVD studies. Although patients in clinical trials reported less pain after cell therapy, the long-term success of cell engraftment is unclear due to the hostile IVD environment. The mechanism-of-action of MSCs is mostly dependent on the secreted soluble factors. Moreover, priming of MSC with interleukin (IL)-1β modulates the secretome content, improving its anti-inflammatory and regenerative effect on IVDD organ culture models. MSC-derived extracellular vesicles (EVs) have also been shown to modulate human IVD cells towards a healthy IVD phenotype in vitro. However, the mechanisms involved in the effect of secretome and EVs, particularly with regard to immunomodulation and matrix metabolism, are not fully understood. Our work investigates the effects of secretome and EVs secreted by IL-1β-primed MSCs to impair IVD matrix degradation and/or improve matrix formation in IVDD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 141 - 141
2 Jan 2024
Ruiz-Fernández C Eldjoudi D Gonzalez-Rodríguez M Barreal A Farrag Y Mobasheri A Pino J Sakai D Gualillo O
Full Access

Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration. We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP. Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 115 - 115
4 Apr 2023
Wu H Ding Y Sun Y Liu Z Li C
Full Access

Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells. ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs. These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 124 - 124
2 Jan 2024
Pascuet-Fontanet A Segarra-Queralt M Noailly J
Full Access

Osteoarthritis (OA) leads to articular cartilage degradation, following complex dysregulation of chondrocyte's metabolism towards a catabolic state. Mechanical and biochemical signals are involved and need to be considered to understand the condition. Regulatory network-based models (RNM) successfully simulated the biological activity of the chondrocyte and the transduction of mechanical signals at the molecular and cell levels. However, the knowledge gap between single-cell regulation and intercellular communication in tissue volumes hinders the interpretability of such models at larger scales. Accordingly, a novel tissue-level biochemical model is proposed. We hypothesise that it is possible to simulate interacting network effects through the transport of diluted species in a finite-element model, to grasp relevant dynamics of cell and tissue regulation in OA. Chondrocyte RNM equations were translated into a reaction term of 18 multi-species diffusion model (e.g., 3 anti-inflammatory and 8 pro-inflammatory interleukins, 3 pro-anabolic and 1 pro-catabolic growth factors, 2 nociceptive factors and 2 pro-inflammatory cytokines). Elements with RNM reaction terms represented the chondrocytes and were distributed randomly through the model, according to known cellular density in the knee cartilage, and could both react to and produce diffusive entities through the pericellular matrix, associated with reduced diffusion coefficients. The model was constructed over a 2D square of 0.47 mm sides considered to be in the middle of the cartilage, so boundary conditions were settled as periodic. Different simulations were initialised with initial concentrations of either healthy or pro-OA mediators. Preliminary results showed that, independently of the initial conditions, the chondrocytes successfully evolved into anabolic states, in absence of sustained pro-catabolic external stimulations, in contrast to single-cell RNM [2]. Our intercellular model suggests that paracrine communication may increase robustness towards cartilage maintenance, and future tests shall reveal new OA dynamics. Acknowledgements: Funding was provided by the European Commission (ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 53 - 53
11 Apr 2023
Vadalà G Di Giacomo G Ambrosio L Cicione C Tilotta V Russo F Papalia R Denaro V
Full Access

This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001) mRNA levels. r-irisin pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p<0.001) and a decrease of IL-1β (p<0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-irisin increased hNPC metabolic activity (p<0.001), COL2 gene expression (p<0.05) and decreased IL-1β (p<0.05) and ADAMTS-5 levels (p<0.01). Irisin stimulates hNPC proliferation, metabolic activity, and anabolism by reducing IL-1β and catabolic enzyme expression while promoting matrix synthesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation. Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA. Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3). Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 121 - 121
2 Jan 2024
Tilotta V Di Giacomo G Cicione C Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Invertebral disc degeneration (IDD) is a degenerative disease involving a variety of musculoskeletal and spinal disorders such as lower back pain (LBP). Secretome derived from mesenchymal stem cells (MSCs) have exerted beneficial effect on tissue regeneration. In this study, the goal was to investigate the paracrine and the anti-inflammatory effects of secretome from interleukin IL1β preconditioned Bone Marrow MSCs (BMSCs) on human nucleus pulposus cells (hNPCs) in a 3D in vitro model. Secretome was collected from BMSCs (BMSCs-sec) after preconditioning with 10 ng/mL IL1β. hNPCs were isolated from surgical specimens, culture expanded in vitro, encapsulated in alginate beads and treated with: growth medium; IL1β 10 ng/mL; IL1β 10 ng/mL for 24 hours and then BMSCs-sec. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess assay) and ROS quantification (Immunofluorescence) iii) glycosaminoglycan (GAG) amount (DMBB) and iv) gene expression levels of extracellular matrix (ECM) components and inflammatory mediators (qPCR). One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. In vitro tests showed an enhancement of hNPCs proliferation after treatment with BMSCs-sec (p ≤ 0.05) compared to IL1β group. After 24 hours, the percentage of dead cells was higher in IL1β treated hNPCs compared to control group and decreased significantly in combined IL1β and BMSCs-sec sample group (p ≤ 0.01). Nitrite and ROS production were significantly mitigated and GAGs content was improved by preconditioned BMSCs-sec (p ≤ 0.05). Furthermore, gene expression levels were modulated by BMSCs-sec treatment compared to controls. Our results supported the potential use of BMSCs' secretome as a cell-free strategy for IDD, overcoming the side effects of cell-therapy. Moreover, secretome derived from IL1β preconditioned BMSCs was able to reduce hNPCs death, attenuate ECM degradation and oxidative stress counteracting IDD progression. Acknowledgements: Financial support was received from the “iPSpine” and “RESPINE” Horizon 2020 projects


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 60 - 60
1 Nov 2021
Cazzanelli P Hausmann ON Wuertz-Kozak K
Full Access

Introduction and Objective. Intervertebral disc (IVD) degeneration is one of the major contributors to low back pain, the leading cause of disability worldwide. This multifactorial pathological process involves the degradation of the extracellular matrix, inflammation, and cell loss due to apoptosis and senescence. While the deterioration of the extracellular matrix and cell loss lead to structural collapse of the IVD, increased levels of inflammation result in innervation and the development of pain. Amongst the known regulators of inflammation, toll-like receptors (TLRs) and more specifically TLR-2 have been shown to be specifically relevant in IVD degeneration. As strong post-transcriptional regulators, microRNAs (miRNAs) and their dysregulation has been connected to multiple pathologies, including degenerative diseases such as osteoarthritis and IVD degeneration. However, the role of miRNAs in TLR signalling in the IVD is still poorly understood and was hence investigated in this study. Materials and Methods. Human Nucleus pulposus (hNP) and Annulus fibrosus (hAF) cells (n=5) were treated with the TLR-2/6 specific agonist PAM2CSK4 (100 ng/mL for 6 hours) in order to activate the TLR2 signalling pathway. After the activation both miRNA and mRNA were isolated, followed by next-generation sequencing and qPCR analysis of proinflammatory cytokines respectively. Furthermore, cell supernatants were used to analyze the secretion of proinflammatory cytokines with enzyme-linked immunosorbent assay. TLR-2 knockdown (siRNA) cells were used as a control. Statistical analysis was conducted by performing Kolmogorov-Smirnov test and a two-tailed Student's t-test using GraphPad Prism version 9.0.2 for Windows (GraphPad Software, La Jolla California USA). Results. TLR-2 activation resulted in the induction of an inflammatory cell response, with a significant increase in gene expression of interleukin (IL)-6 (525 ± 180 fold change, p < 0.05) and IL-8 (7513 ± 1907 fold change, p < 0.05) and protein secretion of IL-6 (30.5 ± 8.1 pg/mL) and IL-8 (28.9 ± 5.4 pg/mL). TLR-2 activation was furthermore associated with changes in the miRNA profile of hNP and hAF cells. Specifically, we identified 10 differentially expressed miRNAs in response to TLR-2 activation, amongst which were miR-335–3p (1.45 log2 FC, p < 0.05), miR-125b-1–3p (0.55 log2 FC, p < 0.05), and miR-181a-3p (−1.05 log2 FC, p < 0.05). Conclusions. The identified miRNAs are known to be associated with osteoarthritis (miR-335-3p), inflammation and IVD degeneration (mir-125-1-3p and miR-181a-3p), but the link to TLR signalling has not been previously reported. Experiments to validate the identified miRNAs and elucidate their functional role are undergoing. The identification of these miRNAs provides an opportunity to further investigate miRNAs in the context of TLR activation and inflammation and to enhance our understanding of underlying molecular mechanisms behind disc degeneration, inflammation, and TLR dysregulation


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives. The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Methods. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. Results. After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. Conclusion. IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway. Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 45 - 45
1 Apr 2018
Markhoff J Weinmann M Schulze C Nebe B Bader R
Full Access

Nowadays, biomaterials can be used to maintain or replace several functions of the human body being constricted or lost due to tumors, fractures, injuries as well as chronic diseases, infections or simply aging. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of β-stabilizers, e. g. niobium (Nb), can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. Previous studies concerning biocompatibility analyses with niobium and especially Ti-42Nb specimens are rarely described; none for niobium and Ti-42Nb powders examining human cell viability, collagen and interleukin synthesis. In this in vitro study, human osteoblasts were cultured on different roughened niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and spherical Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three particle concentrations over four and seven days to imitate influence of wear debris against the background of osteolysis and aseptic implant loosening. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results concerning cell viability (WST-1 test, live-dead staining) and collagen-I synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a significant dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen-I synthesis. Furthermore, interleukin expression was only slightly increased for all powders. In summary, from a cell-biological point of view Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be superior alternatives for medical applications compared to common materials like forged Ti6Al4V


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 37 - 37
1 Mar 2021
Pappa E Papadopoulos S Perrea D Pneumaticos S Nikolaou VS
Full Access

Osteoarthritis is a slowly progressive disease which includes the intervention of several cytokines and macrophage metalleinoproteinases reaction, leading to the degradation of the local cartilage but also having an impact on the serum acute phase proteins (APPs). Subsequently, biomarkers seem to be essential to estimate its progression and the need for any surgical intervention such as total arthroplasty, but also can be used as therapeutic agents. Recently, among APPs, fetuin-A drew attention regarding its possible anti-inflammatory role in animal models but also as a therapeutic agent in the inflammatory joint disease in clinical trials. The purpose of this study is to investigate the possible attenuating role of the intra-articular administration of Fetuin-A in post-traumatic induced secondary osteoarthritis in rats, and also its effect on the systematic levels of IL-2,4,7, BMPs 2,4,7, CRP and Fetuin-A. 30 male Sprague Dawley rats were separated in two groups where post-traumatic osteoarthritis was induced surgically by Anterior Cruciate Ligament Transection and the transection of the Medial Collateral Ligament of the right knee. In the Control Group, only surgical intervention took place. In Fetuin Group, along with the induction of osteoarthritis, a single dose of bovine fetuin was administrated intra-articularly intra-operatively in 5 and 8 weeks of the experimental protocol. Both groups were examined for 8 weeks. The levels of interleukins, bone morphogenetic proteins, Fetuin-A and C-Reactive Protein were evaluated by ELISA of peripheral blood in three time periods: preoperatively, 5 and 8 weeks post-operatively. Knee osteoarthritic lesions were classified according to Osteoarthritis Research Society International Grading System and Modified Mankin Score, by histologic examination. IL-2 levels were significantly decreased in the Fetuin Group. No statistical difference was signed on the levels of IL-7, BMP-2,4,7 and Fetuin-A between the two groups. CRP levels were significantly increased in the Fetuin Group in 5 weeks of the experiment. Fetuin Group signed better scores according to the OARSI classification system and Modified Mankin Score, without any statistical significance. Intra-articular administration of Fetuin-A restrictively affected the progression of post-traumatic arthritis in rats, as only the levels of IL-2 were decreased as well as limited osteoarthritic lesions were observed on the Fetuin Group


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 119 - 119
1 Dec 2020
Giacomo GD Ambrosio L Cicione C Tilotta V Papalia R Vadalà G Denaro V
Full Access

In the last decade, skeletal muscle has been recognized as an endocrine organ able to release molecules that may act as paracrine or endocrine factors, namely myokines. Among these, irisin is secreted upon muscle contraction after physical exercise (PE) and has been demonstrated to yield anabolic effects on different cell types. Recently, irisin has been shown to improve cortical bone mass, geometry and strength, hence resembling the effect of PE. It has also been reported that irisin levels in the serum and synovial fluid of patients with knee osteoarthritis (OA) were negatively correlated with OA severity. Therefore, we hypothesized that irisin may improve cartilage metabolism and blunt the osteoarthritic process. Human osteoarthritic chondrocytes (hOAC) were isolated from osteochondral specimens of patients undergoing total knee joint replacement. After in vitro expansion, hOAC were put in a three-dimensional culture system (alginate beads) and treated with either phosphate-buffered saline (control) or irisin (25 ng/mL). After 1 week, the amount of glycosaminoglycans (GAG) was evaluated using dimethylmethylene blue (DMMB) and PicoGreen assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect interleukin (IL)-1 and -6, matrix metalloproteinase (MMP)-1 and -13, inducible nitric oxide synthase (iNOS) and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -3 gene expression levels. hOAC treated with irisin showed a significant higher GAG content compared to the control group (p < 0.01). Moreover, irisin was able to reduce the expression of catabolic (MMP-1, -13, iNOS) and pro-inflammatory (IL-1, IL-6) markers, while incrementing the expression of TIMP-1 and -3 (p < 0.001). Our results showed that irisin was able to stimulate GAG synthesis and diminish extracellular matrix catabolism in hOAC, demonstrating the existence of a cross-talk between cartilage and muscle possibly supporting the beneficial role of PE on cartilage homeostasis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 28 - 28
1 Mar 2021
Amado I Mathavan N Cavanagh B Murphy C Kennedy O
Full Access

Osteoarthritis (OA) is a disease that affects both bone and cartilage. Typically, this disease leads to cartilage degradation and subchondral bone sclerosis but the link between the two is unknown. Also, while OA was traditionally thought of as non-inflammatory condition, it now seems that low levels of inflammation may be involved in the link between these responses. This is particularly relevant in the case of Post-Traumatic OA (PTOA), where an initial phase of synovial inflammation occurs after injury. The inflammatory mediator interleukin 1 beta (IL-1B) is central to this response and contributes to cartilage degradation. However, whether there is a secondary effect of this mediator on subchondral bone, via bone-cartilage crosstalk, is not known. To address this question, we developed a novel patellar explant model, to study bone cartilage crosstalk which may be more suitable than commonly used femoral head explants. The specific aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response after joint injury and the subsequent development of PTOA. Female Sprague Dawley rats (n=48) were used to obtain patellar explants, under an institutional ethical approval license. Patellae were maintained in high glucose media, under sterile culture conditions, with or without IL-1B (10ng/ml), for 7 days. Contralateral patellae served as controls. One group (n= 12) of patellae were assessed for active metabolism, using two both Live and Dead (L/D) staining and an Alamar Blue assay (AB). A second group (n=12) was used for tissue specific biochemical assays for both bone (Alkaline Phosphatase) and cartilage (sulfated proteoglycan and glycosaminoglycan (sGaG)). Finally, a third group (n=28) of explants were used for histologically analysis. Samples were decalcified, embedded in paraffin and sectioned to 7µm thickness, and then stained using H&E; and Safranin O with fast green. Additionally, toluidine blue and alkaline phosphatase staining were also performed. Our results demonstrate that our system can maintain good explant viability for at least 7 days, but that IL-1B reduces cell viability in patellar cartilage, as measured by both L/D and AB assays after 0, 2, 4 and 7 days in culture. In contrast, sGaG content in cartilage were increased by this treatment. Additionally, ALP, a marker of osteoblastic activity, was increased in IL-1B treated group 4 and 7 days, but was also showed some increase in control groups. Histological analyses showed that IL-1B treatment resulted in reduced proteoglycan staining, demonstrating the powerful effect of this factor in injury response over time. Thus, we conclude that IL-1B affects both bone and cartilage tissues independently in this system, which may have relevance in understanding bone-cartilage crosstalk after injury and how this is involved in PTOA development


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration. Methods. Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis. Results. The serum level of patients (IL-18) increased significantly with the grade of IVD degeneration. There was a dramatic alteration in IL-18 level between the advanced degeneration (Grade III to V) group and the normal group (p = 0.008) Furthermore, IL-18 induced upregulation of the catabolic regulator MMP13 and downregulation of the anabolic regulators aggrecan, type II collagen, and SOX6 at 24 hours, contributing to degradation of disc matrix enzymes. However, BMP-2 antagonised the IL-18 induced upregulation of aggrecan, type II collagen, and SOX6, resulting in reversal of IL-18 mediated disc degeneration. Conclusions. BMP-2 is anti-catabolic in human NP and AF cells, and its effects are partially mediated through provocation of the catabolic effect of IL-18. These findings indicate that BMP-2 may be a unique therapeutic option for prevention and reversal of disc degeneration. Cite this article: S. Ye, B. Ju, H. Wang, K-B. Lee. Bone morphogenetic protein-2 provokes interleukin-18-induced human intervertebral disc degeneration. Bone Joint Res 2016;5:412–418. DOI: 10.1302/2046-3758.59.BJR-2016-0032.R1