Movement dysfunction resulting in a knee valgus position during weight bearing activity is associated with increased risk of Anterior Cruciate Ligament injury and Patellofemoral Pain Syndrome especially in young active females. In clinical practice determining the critical knee flexion angle (CKFA) during a single leg squat (SLS) test is used to assess this dysfunction, yet its reliability is unknown. This study aimed to determine rater agreement in determining the presence of knee valgus movement (yes/no) during a SLS test in recreational females (n = 16, age 24.3 ±7.9 yrs, height 165.7±4.8m, mass 62.5±6.4kg) and the intra and inter-rater reliability of measuring CKFA using SiliconCoach™. Three experienced physiotherapists viewed 48 randomised SLS test videos. One physiotherapist repeated the viewing for test-retest analysis. Test-retest agreement for rating SLS test was acceptable (weighted kappa (k) = 0.667).
Summary Statement. Vitamin E-UHMWPE particles have a reduced osteolysis potential in vivo when compared to virgin, highly cross-linked UHMWPE in a murine calvarial bone model. Introduction. Ultra high-molecular weight polyethylene (UHMWPE) particle-induced osteolysis is one of the major causes of arthroplasty revisions. The lack of particle clearance from the joint inevitably leads to the upregulation of the inflammatory cascade, resulting in bone resorption and implant loosening. Recent in vitro findings (Bladed CL et al. ORS 2011 and J Biomed Mater Res B Appl Biomater, 2012) have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased potential to cause osteolysis. This is of significant importance since VE-stabilised cross-linked UHMWPEs were recently introduced for clinical use, and there is no in vivo data determining the effects of wear debris from this new generation of implants. In this study we hypothesised that particles from VE-stabilised, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Methods. Study groups were the following: 1) Radiation cross-linked VE-UHMWPE, approximately 0.8% by weight, diffused after 100 kGy; 2). Radiation cross-linked virgin UHMWPE (virgin UHMWPE); 3). Shams. Particle generation and implantation: UHMWPE was sent to Bioengineering Solutions (Oak Park, IL) for particle generation. After IACUC approval, C57BL/6 mice (n=12 for each group) received equal amount of particulate debris (3mg) overlying the calvarium and were euthanised after 10 days. Micro-CT scans: High resolution micro-CT scans were performed using an X-Tek HMX ST 225 with a set voltage of 70 kV and current of 70 µA. Topographical Grading Scale: Each calvarial bone (interparietal, right and left parietal, right and left frontal) was blindly scored using the following scale: 0=No osteolysis, defined as intact bone; 1=Minimal osteolysis, affecting 1/3 or less of the bone area; 2=Moderate osteolysis, affecting at least 2/3 of the bone area; 3=Severe osteolysis, defined as completely osteolytic bone. Histological Analysis: H&E and TRAP staining was performed on tissue to confirm the micro-CT findings and to quantify osteoclasts. Statistical Analysis: Inter-rater analysis was performed using Cohen's kappa analysis. An inter-rater coefficient >0.65 was considered as high