Advertisement for orthosearch.org.uk
Results 1 - 20 of 84
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 19 - 19
1 Sep 2021
Lui D Ajayi B Fenner C Fragkakis A Bishop T Bernard J
Full Access

INTRODUCTION. The correct placement of pedicle screws is a major part of spine fusion and it requires experienced trained spinal surgeons. In the era of European Working Time Directive (EWTD), surgical trainees have less opportunity to acquire skills. Josh Kauffman (Author of The First 20 Hours) examined the K. Anders-Ericsson study that 10,000 hours is required to be an expert. He suggests you can be good at anything in 20 hours following 5 methods. This study was done to show the use of accelerated learning in trainees to achieve competency and confidence on the insertion of pedicle screws. METHODS. Data was collected using 3 experienced spine surgeons, 8 trainees and 1 novice (control) on the cadaveric insertion of pedicle screws over a 4 day didactic lecture in the cadaver lab. Each candidate had 2 cadavers and 156 screw placements over 4 hour shifts. Data was collected for time of pedicle screw insertion for each level on the left and right side. A pre-course and post-course questionnaire (Likert scale) was conducted. RESULTS. There were 8 candidates (surgeons) involved. 1 spinal SpR, 6 spine fellows and 1 junior consultant. A physiotherapist was the control novice. The surgeons and the control got significantly faster over time. The control made significantly more errors than the surgeons. Surgeons were significantly faster by the end (p value < 0.05). The control got faster over time and by the end, was no longer significantly slower than the surgeon when they first started. CONCLUSION. Pedicle screw insertion can cause significant morbidity, which includes paralysis. As a trainee, this is not an easy skill to acquire or practice. This focused pedicle screw course shows that a junior spinal surgeon can achieve improved competency and confidence in 20 hours but furthermore a complete novice can learn to insert pedicle screws and reach a level of competence almost at the level of the trainee in 20 hours as well


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 32 - 32
1 Jul 2012
Lund T Laine T Österman H Yrjönen T Schlenzka D
Full Access

Study design. Literature review of the best available evidence on the accuracy of computer assisted pedicle screw insertion. Background. Pedicle screw misplacement rates with the conventional insertion technique and adequate postoperative CT examination have ranged from 5 to 29 % in the cervical spine, from 3 to 58 % in the thoracic spine, and from 6 to 41% in the lumbosacral region. Despite these relatively high perforation rates, the incidence of reported screw-related complications has remained low. Interestingly, the highest rates of neurovascular injuries have been reported from the lumbosacral spine in up to 17% of the patients. Gertzbein and Robbins introduced a 4-mm “safe zone” in the thoracolumbar spine for medial encroachment, consisting of 2-mm of epidural and 2-mm of subarachnoid space. Later, several authors have found the safety margins to be significantly smaller, suggesting that the “safe zone” thresholds of Gertzbein and Robbins do not apply to the thoracic spine, and seem to be too high even for the lumbar spine. The midthoracic and midcervical spine, as well as the thoracolumbar junction set the highest demands for accuracy in pedicle screw insertion, with no room for either translational or rotational error at e.g. T5 level. Computer assisted pedicle screw insertion (navigation) was introduced in the early 90's to increase the accuracy and safety of pedicle screw insertion. Material. PubMed literature search revealed two randomized controlled trials (RCT) comparing the in vivo accuracy of conventional and computer assisted pedicle screw insertion techniques. Three meta-analyses have assessed the published reports on the accuracy of pedicle screw insertion with or without computer assistance, one additional meta-analysis concentrated on the functional outcome of computer assisted pedicle screw insertion. Results. The RCTs by Laine et al and Rajasekaran et al achieved significantly higher screw placement accuracy with computer assistance than with the conventional techniquebased on anatomical landmarks. In a degenerative patient population, Laine et al reported a misplacement rate of 4.6% with computer assistance compared to 13.4% with the conventional technique. In addition to this quantitative difference, a qualitative difference in the misplaced screws was noticed: in the conventional group, 28 out of 37 misplaced screws were either inferior or medial, whereas in the computer assisted group, 1 out of 10 misplaced screws was situated in these ”danger zones”. In deformity surgery, Rajasekaran et al reported a 2% pedicle screw misplacement rate with a computer assisted technique compared to 23% with the conventional technique. Interestingly, in their study, the average screw insertion time in the computer assisted group was significantly shorter than with the conventional technique. The three meta-analyses, assessing up to 37 337 pedicle screws, reported significantly higher accuracy in the placement of pedicle screws with computerassistance compared with the conventional methods. The superiority of the computer assisted technique was even more obvious with abnormal surgical anatomy. CT-based and 3D-fluoroscopy-based navigation methods provided better accuracy compared to 2Dfluoroscopy-based navigation. No statistically significant benefit with computer assistance in the incidence of neuro-vascular complications, or in functional outcome was demonstrated. Conclusion. High pedicle screw misplacement rates have been reported with the conventional technique based on anatomical landmarks and intraoperative fluoroscopy. The concept of ”safe zone” is hypothetical, and underestimates the true risks of misplaced pedicle screws. Computer assistance significantly improves the accuracy and safety of pedicle screw insertion. It will, however, be difficult to correlate this increased accuracy to improved patient outcomes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 85 - 85
1 Jun 2012
Rajasekaran S Kanna R Shetty A
Full Access

Study design. Prospective clinical and radiological analysis of children with complex cervical deformities for the safety of cervical pedicle screw insertion. Objectives. To analyse the possibility, safety and efficacy of cervical pedicle screw insertion in complex pediatric cervical deformities, where conventional stabilisation techniques would not have provided rigid fixation. Summary of Background Data. Although the usage of cervical pedicle screws (CPS) in adults has become established, the feasibility and safety of its application in children has not been described previously in the literature. Methods. Sixteen children of mean age 9.7 ± 2.6 years (range: 3 - 13) requiring spinal stabilization for cranio-vertebral junction anomalies (n=10), cervico-thoracic kyphosis/ kyphoscoliosis (n=5) and cervical tumor excision (n=1) formed the study group. Feasibility of CPS insertion was assessed by computerised tomography images. Standard 3.0 mm titanium pedicle screws were inserted using intraoperative Iso-C C arm based 3 D computer navigation and the containment was post operatively evaluated with CT scan. Results. Based on preoperative CT imaging, 55 pedicles were selected for screw fixation. Intra operatively CPS was successfully inserted at 51 levels and at four sclerosed pedicles (7.3%), screws could not be inserted. At 42 levels, the screws were inserted in the classical description of pedicle screw application and in nine deformed vertebra, the screws were inserted in a non-classical fashion, taking purchase in the three columns of the cervical vertebra. Forty five (88.3%) screws were fully contained, six (11.7 %) had a non-critical breach and none had a critical breach. No perioperative complications related to pedicle screw insertion were noted. Conclusion. Safe insertion of cervical pedicle screws is possible in children. Iso-C navigation provides real time virtual imaging and improves the safety and accuracy of successful pedicle fixation even in altered vertebral anatomy. Pedicle width morphometrics do not restrict screw insertion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 81 - 81
1 Apr 2012
Acharya S Garg A Chahal R Kalra K
Full Access

The study was conducted to review the outcome in cases of anterior expandable interbody cages inserted through a posterior only approach. Cases selected were the anterior cage insertion and posterior stabilization patients managed by posterior only approach. Study includes the patients of various pathologies requiring 3 column support. Twenty patients were included in study. Pathology in 9 patients was tuberculosis, trauma in 3, tumours in 3, metastasis in 3 and deformities in 2patients. Patients with or without neurological deficit were included. Cases were carefully assessed and patients with single level involvement were included as more then single level involvement required more extensive exposure and possible nerve root sacrifice. Detailed neurological status was recorded. The surgery was performed in prone position and after posterior stabilization by pedicle screws the extracavitatory approach was used to insert the expandable cage. In cases of suspicious pathologies the samples for histopathology and staining were collected. Morbidity, mortality blood loss, surgical time, complications, outcome of surgery were compared with historical controls of front and back surgery. The insertion of cages from posterior approach was feasible in all carefully planned cases. None of the patients had problem related to implant in form of cage displacement. All the patients had satisfactory outcome. Posterior stabilization of spine with expandable cage insertion from posterior approach saves the operating time, spares the additional surgical incision and blood loss without compromising the outcome. In carefully planned surgeries it gives excellent results irrespective of etiology


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 30 - 30
1 Oct 2014
Molloy S Aftab S Patel A Butler J Balaji V Wilson L Lee R
Full Access

To assess screw malposition rates and complications associated with pedicle screw insertion using 3D navigation technology. A retrospective study was undertaken for all cases where O-arm® and StealthStation® systems were used over a 2-year period. The primary outcome measure was return to theatre rates for pedicle screw malposition. A total of 938 screws were inserted (934 thoracolumbar and 4 cervical), and 103 patients underwent spinal fixation using O-arm® and StealthStation® navigation. 64 were revision cases and 39 primary cases. Average number of levels was 4.6. There were a total of 10 complications: 3 infections, 1 DVT, 1 PE, 1 fast atrial fibrillation (AF), 1 screw malposition, 1 non-union, 1 undisplaced vertebral body fracture and 1 nerve root compression following osteotomy. The percentage return to theatre for screw malposition using 3D navigation was 1% of patients and 0.1% of pedicle screws. No patients developed permanent neurological compromise. These systems provide accuracy that is comparable to traditional 2D fluoroscopic techniques. We advocate their use in the safe insertion of pedicle screws in complex revision deformity cases where original anatomical landmarks are absent or obscured. We also believe that radiation exposure is considerably less with navigation especially in these complex and revision cases


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 106 - 106
1 Apr 2012
Pande R Dhir J Pyrovolou N Ahuja S
Full Access

To evaluate Radiological changes in the lumbosacral spine after insertion of Wallis Ligament for Foraminal Stenosis. Thirty two Levels in Twenty Six patients were followed up with standardised radiographs after insertion of Wallis Ligaments for Foraminal Stenosis. Wallis ligaments as a top-off or those with prolapsed discs were not included. The Radiological parameters compared were Anterior and Posterior Disc height, Foraminal height and width, The inter-vertebral angle (IVA), Lumbar lordosis and Scoliosis if any. The presence of slips and their progression post-op was noted, as was bony lysis if any. There were ten males with thirteen levels and sixteen females with nineteen levels in the study. Eighteen levels (56.25%) were L4/L5, ten (31.25%) were L5/S1 and 4 (12.5%)were L3/L4. The average age in the series was 59.6 years (Range 37 – 89 yrs). Average follow up was 9.5 months (Range 2 to 36). The Average increase in Anterior disc height was 1.89 mm (+/−1.39), the posterior disc height increased by an average 1.09 mm (+/−1.14). Foraminal height increased by an average 3.85 mm (+/− 2.72), while foraminal width increased by 2.14 mm (+/− 1.38). The IVA increased in 16 and reduced in 15 patients, with no change in 1. Lumbar Lordosis increased in 23 patients, with an average value of 2.3°. No patient exhibited progression in scoliosis and no lysis could be identified. There were three Grade I slips pre-op; none progressed. Foraminal dimensions and Disc height were consistently improved after Wallis insertion. Changes in IVA and Lumbar lordosis were however variable. A longer follow up is suggested to look for sustained improvement and the presence of lysis


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 93 - 97
1 Jan 2012
Lee JH Lee J Park JW Shin YH

In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 20 - 20
1 Jun 2012
Olgun ZD Ayvaz M Demirkiran G Karadeniz E Yazici M
Full Access

Introduction

We prospectively examined the effect of pedicle screw placement at a young age (<5 years) for early-onset spinal deformity on the growth and development of pedicles and the spinal canal.

Methods

Patients with early-onset deformity who received pedicle screw placement before the age of 5 years and had preoperative and final follow-up axial imaging were included. To increase sample size, patients who had the same criteria but with no preoperative axial images were also included. Anteroposterior and transverse diameters of the canal and pedicle length were measured on axial images cutting through the middle of the pedicle (figures 1 and 2).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 4 - 4
1 Jun 2012
Kanna R Shetty A Rajasekaran S
Full Access

Study Design

Prospective analysis of computerised tomogram images of 376 normal pediatric cervical pedicles

Objectives and Summary of Background Data

Although the usage of cervical pedicle screws (CPS) in adults has become established, the feasibility of its application in children has not been studied. There are no in-vivo studies that define the normal pediatric cervical pedicle morphometrics and its changes with growth and development of the child.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims. The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results. Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion. RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 20 - 20
1 Sep 2021
De La Torre C Lam KS Carriço G
Full Access

Introduction. The placement of a large interbody implant allows for a larger surface area for fusion, vis a vis, via retroperitoneal direct anterior, antero-lateral and lateral approaches. At the same time, spinal navigation facilitates a minimally invasive fixation for inserting posterior pedicle screws. We report on the first procedures in the United Kingdom performed by a single-surgeon at a single- centre using navigated robot-assisted spine surgery without the need for guide-wires. Materials and Methods. Whilst positioned in the supine or lateral position, a routine supine anterior lumbar interbody fusion (ALIF), and/or antero-lateral ALIF (AL-ALIF) and/or lateral lateral interbody fusion (LLIF) is performed. The patient is then turned prone or kept in the single lateral position (SPL) for insertion of the posterior screws performed under robotic guidance. Intraoperative CT scan 3D images captured then are sent to the Robotic software platform for planning of the screw trajectories and finally use again at the end of the procedure to confirm screw accuracy. We identified 34 consecutive patients from October 2019 to January 2020 who underwent robotic assisted spine surgery. The demographic, intraoperative, and perioperative data of all these patients were reviewed and presented. Results. Of the 34 patients, 65 levels were treated in total using 204 screws. Of the 21 patients (60%) who underwent single-level fixation, 14 of them (67%) were treated at the L5/S1 level, 3 at L3/L4, 3 at L4/L5 and 1 at L2/L3 level. The remaining 13 patients (40%) underwent multi-level fixation, of which 4 were adult scoliosis. 15 underwent a supine ALIF approach, 1 underwent AL-ALIF, 8 patients underwent combined LLIF and AL-ALIF approach in a lateral decubitus, whilst 9 underwent pure LLIF approach (of which 3 patients were in the single position lateral) and one patient had previous TLIF surgery. The average estimated blood loss was 60 cc. The average planning time was 10 min and the average duration of surgery was 50 min. The average patient age was 54 years and 64% (22/34) were male. The average BMI was 28.1 kg/m. 2. There were no re-interventions due to complications or mal positioned screws. Conclusion. Minimally invasive spine surgery using robot-assisted navigation yields an improved level of accuracy, decreased radiation exposure, minimal muscle disruption, decreased blood loss, shorter operating theatre time, length of stay, and lower complication rates. Further follow-up of the patients treated will help compare the clinical outcomes with other techniques


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 53 - 61
1 Jan 2024
Buckland AJ Huynh NV Menezes CM Cheng I Kwon B Protopsaltis T Braly BA Thomas JA

Aims

The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique.

Methods

This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 575 - 582
1 May 2023
Kato S Demura S Yokogawa N Shimizu T Kobayashi M Yamada Y Murakami H Tsuchiya H

Aims

Patients with differentiated thyroid carcinomas (DTCs) have a favourable long-term survival. Spinal metastases (SMs) cause a decline in performance status (PS), directly affecting mortality and indirectly preventing the use of systemic therapies. Metastasectomy is indicated, if feasible, as it yields the best local tumour control. Our study aimed to examine the long-term clinical outcomes of metastasectomy for SMs of thyroid carcinomas.

Methods

We collected data on 22 patients with DTC (16 follicular and six papillary carcinomas) and one patient with medullary carcinoma who underwent complete surgical resection of SMs at our institution between July 1992 and July 2017, with a minimum postoperative follow-up of five years. The cancer-specific survival (CSS) from the first spinal metastasectomy to death or the last follow-up was determined using Kaplan-Meier analysis. Potential factors associated with survival were evaluated using the log-rank test. We analyzed the clinical parameters and outcome data, including pre- and postoperative disability (Eastern Cooperative Oncology Group PS 3), lung and non-spinal bone metastases, and history of radioiodine and kinase inhibitor therapies.


Aims

The optimal procedure for the treatment of ossification of the posterior longitudinal ligament (OPLL) remains controversial. The aim of this study was to compare the outcome of anterior cervical ossified posterior longitudinal ligament en bloc resection (ACOE) with posterior laminectomy and fusion with bone graft and internal fixation (PTLF) for the surgical management of patients with this condition.

Methods

Between July 2017 and July 2019, 40 patients with cervical OPLL were equally randomized to undergo surgery with an ACOE or a PTLF. The clinical and radiological results were compared between the two groups.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1067 - 1072
1 Sep 2022
Helenius L Gerdhem P Ahonen M Syvänen J Jalkanen J Charalampidis A Nietosvaara Y Helenius I

Aims

The aim of this study was to evaluate whether, after correction of an adolescent idiopathic scoliosis (AIS), leaving out the subfascial drain gives results that are no worse than using a drain in terms of total blood loss, drop in haemoglobin level, and opioid consumption.

Methods

Adolescents (aged between 10 and 21 years) with an idiopathic scoliosis (major curve ≥ 45°) were eligible for inclusion in this randomized controlled noninferiority trial (n = 125). A total of 90 adolescents who had undergone segmental pedicle screw instrumentation were randomized into no-drain or drain groups at the time of wound closure using the sealed envelope technique (1:1). The primary outcome was a drop in the haemoglobin level during first three postoperative days. Secondary outcomes were 48-hour postoperative oxycodone consumption and surgical complications.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 64 - 64
1 Jun 2012
König MA Balamurali G Ebrahimi FV Grevitt MP Mehdian H Boszczyk BM
Full Access

Introduction. Recently published results suggest insertion of shorter screws in L5/S1 stand-alone anterior interbody fusion, fearing S1 nerve root violation. However, insertion of shorter screws led to screw fixation failure and new onset of S1 body fractures. Material and Methods. Retrospective review of patients with L5/S1 stand-alone anterior interbody fusion, focussing on screw length, radiological outcomes (especially metal work failure, screw fixation and S1 body fractures) and new onset of S1 nerve root irritation. Results. 38 patients were included (mean age 46.2±13.3 years, 21 females, 17 males). Fusion of the L5/S1 segment was performed in between 2003-2010; postoperative follow-up ranged from 2-24 months. 15 patients had multilevel surgery (7 multiple segmental fusion, 8 hybrid procedures). Screw length ranged from 20-30 mm. No patient had new postoperative S1 nerve root irritation. Interestingly, 2 patients out of the hybrid group had a new onset of L5 radiculopathy, concordant to the level of disc-replacement. Follow-up x-ray review showed no fracture of S1 body fractures in all patients. No evidence of screw loosening, migration or metal work failure was reported. Conclusion. In our opinion, this review showed that insertion of longer screws for stand-alone anterior interbody fusion in L5/S1 is safe. Longer screws offer better stabilization and seem to minimize risks like S1 body fractures. Short and long-term follow-ups were satisfactory regarding screw placement, migration and positioning of implants in all patients


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.