Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 88 - 88
1 Nov 2018
Manning H
Full Access

This talk will initially give a brief overview of the motivations behind open access publishing and explain the practicalities of the different business models from an author's point of view. The talk will then discuss open access policy, particularly in Europe, and how the publishing landscape is constantly changing, with new initiatives and mandates being introduced all the time. Innovation in peer review such as transparent peer review and registered reports will be outlined and evaluated with examples from the BMC journals portfolio. The talk will then explain some of the funding options available to authors for open access publishing, and introduce the Springer Nature funding support service, which is available to anyone wishing to find out their options. Finally, the importance of data sharing will be discussed, as will the relatively new area of open access books


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 2 - 2
1 Nov 2021
Faldini C
Full Access

Complex spinal deformities can cause pain, neurological symptoms and imbalance (sagittal and/or coronal), severely impairing patients’ quality of life and causing disability. Their treatment has always represented a tough challenge: prior to the introduction of modern internal fixation systems, the only option was an arthrodesis to prevent worsening of the deformity. Then, the introduction of pedicle screws allowed the surgeons to perform powerful corrective manoeuvres, distributing forces over multiple levels, to which eventually associate osteotomies. In treating flexible coronal deformities, in-ternal fixation and corrective manoeuvres may be sufficient: the combination of high density pedicle screws and direct vertebral rotation revolutionized surgical treatment of scoliosis.

However, spinal osteotomies are needed for correcting complex rigid deformities; the type of osteot-omy must be chosen according to the aetiology, type and apex of the deformity. When dealing with large radius deformities, spread over multiple levels and without fusion, multiple posterior column os-teotomies such as Smith-Petersen and Ponte (asymmetric, when treating scoliosis) can be performed, dissipating the correction over many levels. Conversely, the management of a sharp, angulated de-formity that involves a few vertebral levels and/or with bony fusion, requires more aggressive 3 col-umn osteotomies such as Pedicle Subtraction Osteotomies (PSO), Bone Disc Bone Osteotomies (BDBO) or Vertebral Column Resection (VCR). Sometimes the deformity is so severe that cannot be corrected with only one osteotomy: in this scenario, multilevel osteotomies can be performed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 3 - 3
1 Nov 2021
Iavicoli S
Full Access

The future of work brings several challenges and opportunities for occupational health and safety on three major drivers: the rapid progress of technological innovation; demographic changes, in particular ageing of the workforce and migration; and changes in the labour market, especially owing to new ways of per-forming jobs. Innovation technologies are leading to an overall transformation of industrial processes that offer huge developmental perspectives in the world of work and opportunities for society. In the field of prevention of musculoskeletal disorders, relevant progresses have been made in the clinical setting and in the context of care, also in relation to the ageing society. In the near future, the adaptation of workstations and the implementation of sensors and enabling technologies (collaborative robots and exoskeletons) will offer, together with the innovations in the clinic and orthopaedic surgery, a significant contribution to the reduction of risks from biomechanical overload, as well as support interventions to increase work ability and reduce the impact of disability. However, the potential risk scenarios for health and safety in the workplace, along with the progress in occupational health research, lead to the need for creating an inte-grated system of skills and approaches to adopt a Prevention through Design perspective. This requires designing and conceiving processes taking into consideration occupational risk prevention and guarantee-ing the return to work in a multidisciplinary and integrated perspective


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 44 - 44
2 Jan 2024
Ciftci E Grad S Alini M Li Z
Full Access

Osteoarthritis (OA) is the most prevalent degenerative joint disease that is a leading cause of disability worldwide. Existing therapies of OA only address the symptoms. Liraglutide is a well-known anti-diabetic medication that is used to treat type 2 diabetes and obesity. In inflammatory and post-traumatic OA animal models, liraglutide has demonstrated anti-inflammatory, pain-relieving, and cartilage-regenerating effects1 . The objective of this study is to investigate liraglutide's ability to reduce inflammation and promote anabolism in human OA chondrocytes in vitro. Pellets formed with human OA chondrocytes were cultured with a chondrogenic medium for one week to form cartilage tissue. Afterward, pellets were cultured for another 2 weeks with a chondropermissive medium. The OA group was treated with IL-1β to mimic an inflammatory OA condition. The drug group was treated with 0.5 or 10 µM liraglutide. On days 0, 1, and 14, pellets were collected. Conditioned medium was collected over the 2 weeks culture period. The gene and protein expression levels of regenerative and inflammatory biomarkers were evaluated and histological analyzes were performed. Results showed that the nitric oxide release of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were lower than the OA group. The DNA content of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were higher than the OA group on day 14. The RT-qPCR results showed that the anabolism (ACAN, COMP, and COL2) markers were higher expressed in the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups when compared with the OA group. The inflammation (CCL-2 and IL-8) markers and catabolism markers (MMP-1, MMP-3, ADAMTS4, and ADAMTS5) had lower expression levels in the OA + liraglutide groups compared to the OA group. The histomorphometric analysis (Figure 1) supported the RT-qPCR results. The results indicate that liraglutide has anabolic and anti-inflammatory effects on human OA chondrocyte pellets. Acknowledgments: This project has received funding from the Eurostars-2 joint program with co-funding from the European Union Horizon 2020 research and innovation program. The funding agencies supporting this work are (in alphabetical order of participating countries): France: BPI France; Germany: Project Management Agency (DLR), which acts on behalf of the Federal Ministry of Education and Research (BMBF); The Netherlands: Netherlands Enterprise Agency (RVO); Switzerland: Innosuisse (the Swiss Innovation Agency). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 71 - 71
2 Jan 2024
Zeugolis D
Full Access

The term macromolecular crowding is used to describe equilibria and kinetics of biochemical reactions and biological processes that occur via mutual volume exclusion of macromolecules in a highly crowded structureless medium. In vivo, the extracellular space is heavily crowded by a diverse range of macromolecules and thus, biological processes occur rapidly, whilst in vitro, in the absence of macromolecules, the same processes occur very slowly, if they are initiated at all (1-3). This talk will discuss the concept of macromolecular crowding, alone or in combination with other in vitro microenvironment modulators, in tendon engineering context. Acknowledgements: This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No. 866126. This publication has emanated from research supported by grants from Science Foundation Ireland (SFI) under grant number 19/FFP/6982


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 131 - 131
2 Jan 2024
Vadalà G
Full Access

Infections are among the most diffused complications of the implantation of medical devices. In orthopedics, they pose severe societal and economic burden and interfere with the capability of the implants to integrate in the host bone, significantly increasing failure risk. Infection is particularly severe in the case of comorbidities and especially bone tumors, since oncologic patients are fragile, have higher infection rate and impaired osteoregenerative capabilities. For this reason, prevention of infection is to be preferred over treatment. This is even more important in the case of spine surgery, since spine is among the main site for tumor metastases and because incidence of post operative surgical-site infections is significant (up to 15-20%) and surgical options are limited by the need of avoiding damaging the spinal cord. Functionalization of the implant surfaces, so as to address infection and, possibly, co- adjuvate anti-tumor treatments, appears as a breakthrough innovation. Unmet clinical needs in infection and tumors is presented, with a specific focus on the spine, then, new perspectives are highlighted for their treatment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 41 - 41
2 Jan 2024
Balmayor E
Full Access

Messenger RNA (mRNA) is a new class of drug that can be used to express a therapeutic protein and, in contrast to DNA, is safer and inexpensive. Among its advantages, mRNA will immediately begin to express its encoded protein in the cell cytoplasm. The protein will be expressed for a period of time, after which the mRNA is degraded. There is no risk of genetic damage, one of the concerns with plasmid DNA (pDNA) used in traditional gene therapy approaches. Nevertheless, mRNA application in tissue regeneration and regenerative medicine remains limited. In this case, mRNA must overcome its main hurdles: immunogenicity, lack of stability, and intracellular delivery. Research has been done to overcome these limitations, and the future of mRNA seems promising for tissue repair. 1,2. This keynote talk will address questions including: What are the opportunities for mRNA to improve outcomes in musculoskeletal tissue repair, in particular bone and cartilage? What are the key factors and challenges to expediting this technology to patient treatment (beyond COVID-19 vaccination)?. Acknowledgements: E.R.B thanks the cmRNAbone project funded by the European Union's Horizon 2020 research and innovation program under the grant agreement no. 874790 and the NIH R01 AR074395 from NIAMS for funding her mRNA work


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 77 - 77
2 Jan 2024
Khiabani A Kovrlija I Locs J Loca D Gasik M
Full Access

Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 60 - 60
4 Apr 2023
MacLeod A Mandalia V Mathews J Toms A Gill H
Full Access

High tibial osteotomy (HTO) is an effective surgical treatment for isolated medial compartment knee osteoarthritis; however, widespread adoption is limited due to difficulty in achieving the planned correction, and patient dissatisfaction due to soft tissue irritation. A new HTO system – Tailored Osteotomy Knee Alignment (TOKA®, 3D Metal Printing Ltd, Bath, UK) could potentially address these barriers having a custom titanium plate and titanium surgical guides featuring a unique mechanism for precise osteotomy opening as well as saw cutting and drilling guides. The aim of this study was to assess the accuracy of this novel HTO system using cadaveric specimens; a preclinical testing stage ahead of first-in-human surgery according to the ‘IDEAL-D’ framework for device innovation. Local ethics committee approval was obtained. The novel opening wedge HTO procedure was performed on eight cadaver leg specimens. Whole lower limb CT scans pre- and post-operatively provided geometrical assessment quantifying the discrepancy between pre-planned and post-operative measurements for key variables: the gap opening angle and the patient specific surgical instrumentation positioning and rotation - assessed using the implanted plate. The average discrepancy between the pre-operative plan and the post-operative osteotomy correction angle was: 0.0 ± 0.2°. The R2 value for the regression correlation was 0.95. The average error in implant positioning was −0.4 ± 4.3 mm, −2.6 ± 3.4 mm and 3.1 ± 1.7° vertically, horizontally, and rotationally respectively. This novel HTO surgery has greater accuracy and smaller variability in correction angle achieved compared to that reported for conventional or other patient specific methods with published data available. This system could potentially improve the accuracy and reliability of osteotomy correction angles achieved surgically


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 23 - 23
2 Jan 2024
Dragonas C Waseem S Simpson A Leivadiotou D
Full Access

The advent of modular implants aims to minimise morbidity associated with revision of hemiarthroplasty or total shoulder arthroplasty (TSA) to reverse shoulder arthroplasty (RSR) by allowing retention of the humeral stem. This systematic review aimed to summarise outcomes following its use and reasons why modular humeral stems may be revised. A systematic review of Pubmed, Medline and EMBASE was performed according to PRISMA guidelines of all patients undergoing revision of a modular hemiarthroplasty or TSA to RSR. Primary implants, glenoid revisions, surgical technique and opinion based reports were excluded. Collected data included demographics, outcomes and incidence of complications. 277 patients were included, with a mean age of 69.8 years (44-91) and 119 being female. Revisions were performed an average of 30 months (6-147) after the index procedure, with the most common reason for revision being cuff failure in 57 patients. 165 patients underwent modular conversion and 112 underwent stem revision. Of those that underwent humeral stem revision, 18 had the stem too proximal, in 15 the stem was loose, 10 was due to infection and 1 stem had significant retroversion. After a mean follow up of 37.6 months (12-91), the Constant score improved from a mean of 21.8 to 48.7. Stem revision was associated with a higher complication rate (OR 3.13, 95% CI 1.82-5.39). The increased use of modular stems has reduced stem revision, however 40% of these implants still require revision due to intra-operative findings. Further large volume comparative studies between revised and maintained humeral stems post revision of modular implants can adequately inform implant innovation to further improve the stem revision rate


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 129 - 129
2 Jan 2024
Doyle S Winrow D Aregbesola T Martin J Pernevik E Kuzmenko V Howard L Thompson K Johnson M Coleman C
Full Access

In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods. MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging. The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription. Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of bone substitute materials to clinic. Acknowledgements: This work was co-funded by Enterprise Ireland and Zoan Biomed through Innovation Partnership IP20221024


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 26 - 26
1 Dec 2022
Salamanna F Contartese D Borsari V Griffoni C Brodano GB Gasbarrini A Fini M
Full Access

The Spine Surgery Unit of IRCCS Istituto Ortopedico Rizzoli is dedicated to the diagnosis and the treatment of vertebral pathologies of oncologic, degenerative, and post-traumatic origin. To achieve increasingly challenging goals, research has represented a further strength for Spinal Surgery Unit for several years. Thanks to the close synergy with the Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, extensive research was carried out. The addition of the research activities intensifies a complementary focus and provides a unique opportunity of innovation. The overall goal of spine research for the Spine Surgery Unit and for the Complex Structure Surgical Sciences and Technologies is and has been to:. - investigate the factors that influence normal spine function;. - engineer and validate new and advanced strategies for improving segmental spinal instrumentation, fusion augmentation and grafting;. - develop and characterize advanced and alternative preclinical models of vertebral bone metastasis to test drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses;. - evaluate the clinical characteristics, treatment modalities, and potential contributing and prognostic factors in patients with vertebral bone metastases;. - realize customized prosthesis to replace vertebral bodies affected by tumours or major traumatic events, specifically engineered to reduce infections, and increase patients’ surgical options. These efforts have made possible to obtain important results that favour the translation of basic research to application at the patient's bedside, and from here to routine clinical practice (without excluding the opposite pathway, in which the evidence generated by clinical practice helps to guide research). Although translational research can provide patients with valuable therapeutic resources, it is not risk-free. Thus, it is therefore necessary an always close collaboration between researchers and clinicians in order to guarantee the ethicality of translational research, by promoting the good of individuals and minimising the risks


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 131 - 131
2 Jan 2024
McDermott G Domingos M Barkatali B Richardson S
Full Access

Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute. Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties. Histology, gene expression and mass spectrometry were performed on native tissue to investigate tissue architecture, matrix components, cell populations and protein expression regionally across the meniscus. 3D laser scanning and magnetic resonance imaging were employed to acquire the external geometrical information prior to fabrication of a 3D printed meniscus. Bioink suitability was investigated through regional meniscal cell encapsulation in blended hydrogels, with the incorporation of growth factors and assessed for their suitability through rheology, scanning electron microscopy, histology and gene expression analysis. Meniscal tissue characterisation revealed regional variations in matrix compositions, cellular populations and protein expression. The process of imaging through to 3D printing highlighted the capability of producing a construct that accurately replicated meniscal geometries. Regional meniscal cell encapsulation into hydrogels revealed a recovery in cell phenotype, with the incorporation of growth factors into the bioink's stimulating cellular re-differentiation and improved zonal functionality. Meniscus biofabrication highlights the potential to print patient specific, customisable meniscal implants. Achieving zonally distinct variations in cell and matrix deposition highlights the ability to fabricate a highly complex tissue engineered construct. Acknowledgements: This work was undertaken as part of the UK Research and Innovation (UKRI)-funded CDT in Advanced Biomedical Materials


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 29 - 29
2 Jan 2024
Bojan A Procter P Karami P Pioletti D
Full Access

The fixation of articular fractures, with many small osteochondral fragments, is a challenging unmet need where a bone adhesive would be a useful adjunct to standard treatments. Whilst there are no such adhesives in current clinical use, preclinical animal models have demonstrated good healing of bone in unloaded models using an adhesive based on phosphoserine modified calcium phosphate cement (PM-CPC). An ex-vivo human bone core model has shown that this adhesive bonds freshly harvested human bone. To confirm this adhesive is capable of supporting loaded osteochondral fragments a porcine model has been developed initially ex-vivo on the path to an in-vivo study. In this model bone cores, harvested from the medial knee condyle, are glued in place with the adhesive. In-vivo adjacent pairs of bone cores would be replaced with adhesive and a control with conventional pin fixation respectively. As osteochondral bone fragments have both bone and cartilage components, this suggested a dual adhesive strategy in which components designed for each tissue type are used. This concept has been explored in an ex-vivo porcine pilot study presented herewith. At the subchondral bone level, the PM-CPC was used. At the cartilage level, a second adhesive, a methacrylated phosphoserine containing hyaluronic acid (MePHa) hydrogel designed specifically for soft tissues was applied. This is a challenging model as both adhesives have to be used simultaneously in a wet field. The pilot showed that once the subchondral component is glued in place, the PM-CPC adhesive intruding into the cartilage gap can be removed before applying the cartilage adhesive. This enabled the MePHa adhesive to be injected between the cut cartilage edges and subsequently light-cured. This two-stage gluing method is demanding and an in-vivo pilot is necessary to perfect and prove the operative technique. Acknowledgements: The human bone core project was partially financed by Innovation Fund of Västra Götaland Region, Sweden. The MePHa hydrogel work was supported by a Swiss National Fund grant # CR23I3_159301


Full Access

Mesenchymal stem cells (MSCs) have been studied for the treatment of Osteoarthritis (OA), a potential mechanism of MSC therapies has been attributed to paracrine activity, in which extracellular vesicles (EVs) may play a major role. It is suggested that MSCs from younger donor compete with adult MSC in their EV production capabilities. Therefore, MSCs generated from induced pluripotent mesenchymal stem cells (iMSC) appear to provide a promising source. In this study, MSCs and iMSC during long term-expansion using a serum free clinical grade condition, were characterized for surface expression pattern, proliferation and differentiation capacity, and senescence rate. Culture media were collected continuously during cell expansion, and EVs were isolated. Nanoparticle tracking analysis (NTA), transmission electron microscopy, western blots, and flow cytometry were used to identify EVs. We evaluated the biological effects of MSC and iMSC-derived EVs on human chondrocytes treated with IL-1α, to mimic the OA environment. In both cell types, from early to late passages, the amount of EVs detected by NTA increased significantly, EVs collected during cells expansion, retained tetraspanins (CD9, CD63 and CD81) expression. The anti-inflammatory activity of MSC-EVs was evaluated in vitro using OA chondrocytes, the expression of IL-6, IL-8 and COX-2 was significantly reduced after the treatment with hMSC-derived EVs isolated at early passage. The miRNA content of EVs was also investigated, we identify miRNA that are involved in specific biological function. At the same time, we defined the best culture conditions to maintain iMSC and define the best time window in which to isolate EVs with highest biological activity. In conclusion, a clinical grade serum-free medium was found to be suitable for the isolation and expansion of MSCs and iMSC with increased EVs production for therapeutic applications. Acknowledgments: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 874671


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 78 - 78
2 Jan 2024
Larrañaga-Jaurrieta G Abarrategui A Camarero-Espinosa S
Full Access

In the native articular cartilage microenvironment, chondrocytes are constantly subjected to dynamic physical stimuli that maintains tissue homeostasis. They produce extra cellular matrix (ECM) components such as collagens (type II mainly, 50-75%), proteoglycans (10-30%) and other type of proteins. 1. . While collagen offers a large resistance in tension, proteoglycans are the responsible of the viscoelastic response under compression due to the negative charge they confer to the ECM allowing it to entrap a large amount of interstitial fluid. In pathologic states (e.g. osteoarthritis), this ECM is degenerated and the negative charge becomes unbalanced, losing the chondroprotective properties and resulting on an overloaded chondrocytes that further degenerate the matrix. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) has been used to generate acoustic (pressure) waves that create bubbles that collapse with cells, inducing a stimulus that can modulate cell response. 2. This mechanical stimulation promotes the expression of type II collagen, type X collagen, aggrecan and TGF-β, appearing as a great strategy to regenerate cartilage. However, current strategies make use of extrinsic forces to stimulate cartilage formation overlooking the physico-chemical properties of the degenerated cartilage, resulting in an excessive load-transfer to chondrocytes and the consequent hypertrophy and degeneration. Here, interpenetrated networks (IPNs) with different compositions were created using methacrylated gelatin (GelMA), to mimic the collagen, and alginate functionalized with tyramine (Alg-tyr) to mimic glycosaminoglycans and to introduce a negative charge in the model. Within the matrix chondrocytes where encapsulated and stimulated under different conditions to identify the ultrasound parameters that enhance tissue formation. Samples with and without stimulation were compared analysing the expression and deposition of collagen II, aggrecan, collagen X and TGF-β. The results suggested that the chondrogenic marker expression of the samples stimulated for 10 minutes per day for 28 days, was two times higher overall in all of the cases, which was correlated to the tissue formation detected. Acknowledgments: The authors would like to thank the Basque Government for the “Predoctoral Training Program for Non-Doctoral Research Staff 2021-2022” (Grant ref.: PRE_2021_1_0403). This work was supported by the RETOS grant PID2020-114901RA-I00 of the Ministry of Science and Innovation (MICINN)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 34 - 34
2 Jan 2024
Díaz-Payno P Llorca J Lantada A Patterson J
Full Access

Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide. [1]. , and represents a significant economic burden to patients and society. [2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine. [3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair. [4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint. [5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA). [6]. Such framework can be 3D printed to produce anatomically accurate implants. [7]. , attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures. [8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC. Acknowledgments: This project has received funding from the European Union's Horizon Europe research and innovation MSCA PF programme under grant agreement No. 101110000


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 40 - 40
2 Jan 2024
Tryfonidou M
Full Access

Within the field of disc degeneration-related low back pain, the spine community has been increasingly acknowledging the regenerative potential of extracellular vesicles (EVs). EVs are small lipid bilayer-delimited particles naturally released by cells, involved in intercellular signaling. They do so by interacting with recipient cells and releasing their biological cargo (e.g., mRNA, miRNA, DNA, protein, lipid). EVs derived from mesenchymal stromal cells and, more recently, also EVs from notochordal cells, the cells residing within the core of the juvenile human disc, are being actively studied. In general, they have been proposed to mitigate inflammation/catabolic processes, reduce apoptosis, stimulate proliferation and even improve the matrix producing capacity of the treated cells. Within this context, appropriate characterization of EVs is essential to increase the level of evidence that the reported effects are indeed EV-associated. To analyze the purity and biochemical composition of EV preparations the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins co-isolated/recovered with EVs. Alongside, to prove that the effects are EV-associated and not due to co-isolated factors from the tissue or cells used to derive the EVs, appropriate technical controls need to be taken along (during cell/tissue culture). As such the question arises: “what is the evidence so far?”. While from a fundamental perspective EVs are very appealing, the use of natural EVs in clinical applications is challenging. It comes with drawbacks, including biologic variability, yield, cumbersome isolation, and challenging upscaling and storage to achieve industrial levels. To date there is no FDA-approved EV-based therapy for disc-related lower back pain. Nonetheless, EV-based therapeutic approaches have unique advantages over the use of (pluripotent) stem cell-based therapies, such as a high biologic, but low immunogenic and tumorigenic potential. Acknowledgements: This talk is based on experiences from part of the project NC-CHOICE [no. 19251] of the research talent programme VICI financed by the Dutch Research Council (NWO) and the iPSpine project that receives funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 825925


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated. Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis. These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE. Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 89 - 89
2 Jan 2024
Runzer C Sadowska J Plank C O'Brien F van Griensven M Balmayor E
Full Access

Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production. 1. The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use. 2. Furthermore, BMP-7 was removed from the market. 3. These complications are related to the high doses used (1.5-40 miligrams per surgery). 2. compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range). 4. In this study, we use transcript therapy to deliver chemically modified mRNA (cmRNA) encoding BMP-7. Compared to direct use of proteins, transcript therapy allows the sustained synthesis of proteins with native conformation and true post-translational modifications using doses comparable to the physiological ones. 5. Moreover, cmRNA technology overcomes the safety and affordability limitations of standard gene therapy i.e. pDNA. 6. BMP-7 cmRNA was delivered using Lipofectamine™ MessengerMAX™ to human mesenchymal stromal cells (hMSCs). We assessed protein expression and osteogenic capacity of hMSCs in monolayer culture and in a house-made, collagen hydroxyapatite scaffold. Using fluorescently-labelled cmRNA we observed an even distribution after loading complexes into the scaffold and a complete release after 3 days. For both monolayer and 3D culture, BMP-7 production peaked at 24 hours post-transfection, however cells transfected in scaffolds showed a sustained expression. BMP-7 transfected hMSCs yielded significantly higher ALP activity and Alizarin red staining at later timepoints compared to the untransfected group. Interestingly, BMP-7 cmRNA treatment triggered expression of osteogenic genes like OSX, RUNX-2 and OPN, which was also reflected in immunostainings. This work highlights the relevance of cmRNA technology that may overcome the shortcomings of protein delivery while circumventing issues of traditional pDNA-based gene therapy for bone regeneration. Acknowledgement: This work has been performed as part of the cmRNAbone project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 874790