Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods. A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four
INTRODUCTION. Thorough understanding and feedback of the post-operative
We investigated factors that were thought to be associated with an increased incidence of squeaking of ceramic-on-ceramic total hip replacements. Between June 1997 and December 2008 the three senior authors implanted 2406 primary total hip replacements with a ceramic-on-ceramic bearing surface. The mean follow-up was 10.6 years. The diagnosis was primary osteoarthritis in each case, and no patient had undergone previous surgery to the hip. We identified 74 squeaking hips (73 patients) giving an incidence of 3.1% at a mean follow-up of 9.5 years (4.1 to 13.3). Taller, heavier and younger patients were significantly more likely to have hips that squeaked. Squeaking hips had a significantly higher range of post-operative internal (p = 0.001) and external rotation (p = 0.003) compared with silent hips. Patients with squeaking hips had significantly higher activity levels (p = 0.009). A squeaking hip was not associated with a significant difference in patient satisfaction (p = 0.24) or Harris hip score (p = 0.34). Four
Three-dimensional (3D) weight-bearing alignment of the lower extremity is crucial for understanding biomechanics of the normal and pathological functions at the hip, knee, and ankle joints. In addition,
This study investigated the effect of the articulation position on joint load transfer in total elbow arthroplasty. To quantify loading, an adjustable humeral component, instrumented with a load cell, was developed to measure ulnohumeral loads in-vitro. Computer guidance was implemented to accurately place the linked articulation into eight cadaveric elbows. Axial compression and bending about the flexion axis produced the greatest loads during simulated active elbow flexion. An anteriorly malpositioned flexion-extension axis resulted in increased joint loads during flexion. Translational positional errors were more influential than rotational position on articular loading. To quantify the relationship between total elbow arthroplasty position and elbow joint loading. Eight cadaveric upper extremities were tested using a motion-controlled testing device, which simulated muscle activity. Computer guidance was employed to accurately position a linked implant consisting of a custom-designed adjustable humeral component and commercial ulnar component. The testing apparatus was instrumented with a six-degree-of-freedom load cell to measure axial and bending loads. Seven
Aim: To analyse the impact of
Sub-optimal positioning of the implant is thought to be related to poor outcome after Lumbar Disc Replacement. Our aim was to analyse the impact of
Robotic-assisted technology in total knee arthroplasty (TKA) aims to increase implantation accuracy, with real-time data being used to estimate intraoperative component alignment. Postoperatively, Perth computed tomography (CT) protocol is a valid measurement technique in determining both femoral and tibial component alignments. The aim of this study was to evaluate the accuracy of intraoperative component alignment by robotic-assisted TKA through CT validation. A total of 33 patients underwent TKA using the MAKO robotic-assisted TKA system. Intraoperative measurements of both femoral and tibial component placements, as well as limb alignment as determined by the MAKO software were recorded. Independent postoperative Perth CT protocol was obtained (n.29) and compared with intraoperative values. Mean absolute difference between intraoperative and postoperative measurements for the femoral component were 1.17 degrees (1.10) in the coronal plane, 1.79 degrees (1.12) in the sagittal plane, and 1.90 degrees (1.88) in the transverse plane. Mean absolute difference between intraoperative and postoperative measurements for the tibial component were 1.03 degrees (0.76) in the coronal plane and 1.78 degrees (1.20) in the sagittal plane. Mean absolute difference of limb alignment was 1.29 degrees (1.25), with 93.10% of measurements within 3 degrees of postoperative CT measurements. Overall, intraoperatively measured component alignment as estimated by the MAKO robotic-assisted TKA system is comparable to CT-based measurements.
Accurate implant alignment, prolonged operative times, array pin site infection and intra-operative fracture risk with computer assisted knee arthroplasty is well documented. This study compares the accuracy and cost-effectiveness of the pre- operative MRI based Signature custom made guides (Biomet) to intra-operative computer navigation (BrainLab Knee Unlimited). Twenty patients from a single surgeon's orthopaedic waiting list awaiting primary knee arthroplasty were identified. Patients were contacted and consented for the study and their suitability for MRI examination assessed. An MRI scan of the hip, knee and ankle was performed of the operative side following a set scanning protocol. Following MRI, patient specific femoral and tibial positioning cutting guides were manufactured. Patients then underwent arthroplasty and intra-operative computer navigation was used to measure the accuracy of the custom made, patient specific cutting guides. A cost analysis of the signature system compared with computer navigation was made. Our provisional results show that the accuracy of the pre-operative MRI patient specific femoral and tibial positioning guides was comparable to computer navigation. Pre-operative, patient specific
Summary Statement. In this study, excellent positioning of custom-made glenoid components was achieved using patient-specific guides. Achieving the preoperatively planned orientation of the component improved significantly and more screws were located inside the scapular bone compared to implantations without such guide. Introduction. Today's techniques for total or reverse shoulder arthroplasty are limited when dealing with severe glenoid defects. The available procedures, for instance the use of bone allografts in combination with available standard implants, are technically difficult and tend to give uncertain outcomes (Hill et al. 2001; Elhassan et al. 2008; Sears et al. 2012). A durable fixation between bone and implant with optimal fit and
Different resurfacing implants offer different kinds of positioning instruments. As it is of outmost importance to position the components within rather narrow limits to diminish the risk of femoral notching or impingement we decided to measure the position achieved in 72 hips resurfaced with the Durom. ®. resurfacing hip and instruments. There were 38 males and 27 females with 72 hips (7 bilateral). The indication was OA in 51 cases, RA in 12 and ON in 2. We compared 2 groups, 26 hips operated with an antero-lateral approach (A) and 46 with a postero-lateral approach (B). The acetabular cup anteversion angle was 22±11° in group A and 15±9° in group B. The abduction angle was 38±9 ° in group A and 44±7° in group B. The acetabular gap was 2±1 mm, resp. 2±2 mm. The stem-shaft angle was 140±5° resp. 141±6°. Retroverted cups averaged 7±4°. The difference between pre- and postoperative acetabular size was 3 mm in group A (mostly RA patients) and 5 mm in group B (mostly OA patients). Conclusions: We have obtained a fairly good
The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (Aims
Patients and Methods
Our data suggest that postoperative component positioning in TKA with PSPG is not consistent with pre-operative software planning. More studies are needed to rule out possible learning curve in this study. Patient specific positioning guides (PSPGs) in TKA are based on MRI or CT data. Preoperatively, knee component positions can be visualised in 3-dimensional reconstructed images. Software allows anticipation of component position. From software planning PSPGs are manufactured and those PSPGs represent intra-operative component alignment. To our knowledge, there are no studies comparing pre-operative software planning with post-operative alignment. Aim of this study is to investigate the correlation between pre-operative planning of component positioning and the post-operative achieved alignment with PSPG technique.Summary Statement
Introduction
Aims. The primary aim of this study was to determine the surgical team’s
learning curve for introducing robotic-arm assisted unicompartmental
knee arthroplasty (UKA) into routine surgical practice. The secondary
objective was to compare accuracy of
Metal-on-metal hip resurfacing has been introduced recently, due to its potential advantages of biomechanics and biotribology. However, a number of problems have been identified from clinical retrievals, including significant elevation of wear when the implant is mal-positioned. Our hypothesis is that implant mal-position and micro-lateralisation can result in edge contact, leading to increases in wear. The aim of this study was to investigate the combined effect of cup position and micro-lateralisation on the contact mechanics of metal-on-metal hip resurfacing prosthesis, in particularly to identify conditions which resulted in edge contact. Finite element (FE) method was used. A generic metal-on-metal hip resurfacing prosthesis was modelled. The bearing diameters of the femoral head and acetabular cup components were 54.49mm and 54.6mm respectively, with a diametral clearance between the head and the cup of 0.11mm. The resurfacing components were implanted into a hemi-pelvic hip joint bone model and all the materials in the FE model were assumed to be homogenous, isotropic and linear elastic (Udofia et al 2007). The FE models consisted of approximately 80,000 elements, which were meshed in I-DEAS (Version 11, EDS, USA) and solved using ABAQUS (Version 6.7-1, Dassault Systèmes). For this study, the femoral component was fixed with an inclination angle of 45° and an anteversion angle of 10°. The orientation of the acetabular cup was varied, using inclination angles of 35° and 65°, and anteversion angles between −10° to 30°. Contact at the bearing surface between the cup and femoral head was modelled using frictionless surface-based elements, simulating a fully lubricated situation, as coefficients of friction less than 0.1 would not have appreciable effects on the predicted contact mechanics. The femoral component was fixed into the femur (except the guide pin) using PMMA cement with an average thickness of approximately 1mm. The other contact interfaces in the FE model (cup/acetabulum, cement/bone and cement/femoral component) were all assumed to be rigidly bonded. The hip joint model was loaded through a fixed resultant hip joint contact force of 3200N, and was applied through medial, anterior muscle forces and subtrochanteric forces to simulate the mid-to-terminal stance phase (approximately 30% – 50%) of the gait cycle (Bergmann et al., 1993). Micro-lateralisation was modelled through displacing the femoral head laterally, up to 0.5mm, relative the centre of the cup. Edge contact was detected once the inclination angle became greater than 65°. The effect of ante-version was to further shift the contact area towards the edge of the cup, nevertheless no edge contact was found for ante-version angles up to 25° and inclination angles below 55°. However, when the micro-lateralisation was introduced, edge contact was detected at a much smaller inclination angle. For example, even with a micro-lateralisation of 0.5 mm, edge contact occurred at an inclination angle of 45°. This study highlights the importance of surgical techniques on the contact mechanics and tribology of metal-on-metal hip resurfacing and potential outcome of these devices.
Progression of osteoarthritis (OA) of the knee is related to alignment of the lower extremity. Postoperative lower extremity alignment is commonly regarded as an important factor in determining favourable kinematics to achieve success in total knee arthroplasty (TKA) and high tibial osteotomy (HTO). An automated image-matching technique is presented to assess three-dimensional (3D) alignment of the entire lower extremity for natural and implanted knees and the
Total shoulder arthroplasty (TSA) is an effective treatment for end-stage glenohumeral arthritis. The use of high modulus uncemented stems causes stress shielding and induces bone resorption of up to 63% of patients following TSA. Shorter length stems with smaller overall dimensions have been studied to reduce stress shielding, however the effect of humeral short stem varus-valgus positioning on bone stress is not known. The purpose of this study was to quantify the effect of humeral short stem varus-valgus angulation on bone stresses after TSA. Three dimensional models of eight male cadaveric humeri (mean±SD age:68±6 years) were created from computed tomography data using MIMICS (Materialise, Belgium). Separate cortical and trabecular bone sections were created, and the resulting bone models were virtually reconstructed three times by an orthopaedic surgeon using an optimally sized short stem humeral implant (Exactech Preserve) that was placed directly in the center of the humeral canal (STD), as well as rotated varus (VAR) or valgus (VAL) until it was contacting the cortex. Bone was meshed using a custom technique which produced identical bone meshes permitting the direct element-to-element comparison of bone stress. Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation. A joint reaction force was then applied to the intact and reconstructed humeri representing 45˚ and 75˚ of abduction. Changes in bone stress, as well as the expected bone response based on change in strain energy density was then compared between the intact and reconstructed states for all
Introduction: We perform MIS since 2004 and have done 1257 THR (SL-Plus stem and since 2005 SL MIA stem with a modification in the proximal part). The operation is performed with the anterolateral approach in supine position under direct view with visible landmarks. Material and Methods: Till know we implanted 357 THR with the new designed stem and the BICON threaded cup. A precise preoperative planning for implant size, neck length and offset is obligatory and is performed with manuel templanting or digital planning on AP X-ray in standing position. We evaluated used sizes of standard and offset stems and cups, neck length, material of bearing surfaces and on the AP X-ray postoperative in standing position the inclination and anteversion angle of the cup as well as the stem position, postoperative leg length and Trendelenburg sign. Results: According to the preoperative templating we used offset stems in 30%. of our patients. The neck length small in 14%, medium in 46%, large in 40%. The range of cup inclination angle was in safe zone with an average of 45,8°, neutral stem position in 92,2%. Leg length equal in 73% and lengthening or shortening +/−in average 8,4mm and 6,5 mm. The Trendelenburg sign was negativ in 93% at the time of removal of skin sutures. Conculsion: The requirement for precise
The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.Aims
Methods