Advertisement for orthosearch.org.uk
Results 1 - 20 of 373
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 141 - 141
1 Apr 2019
Pryce G Sabu B Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Introduction. Impingement of total hip arthroplasties (THAs) has been reported to cause rim damage of polyethylene liners, and in some instances has led to dislocation and/or mechanical failure of liner locking mechanisms in modular designs. Elevated rim liners are used to improve stability and reduce the risk of dislocation, however they restrict the possible range of motion of the joint, and retrieval studies have found impingement related damage on lipped liners. The aim of this study was to develop a tool for assessing the occurrence of impingement under different activities, and use it to evaluate the effects a lipped liner and position of the lip has on the impingement-free range of motion. MATERIALS & METHOD. A geometrical model incorporated a hemi-pelvis and femur geometries of one individual with a THA (DePuy Pinnacle® acetabular cup with neutral and lipped liners; size 12 Corail® stem with 32mm diameter head) was created in SOLIDWORKS (Dassault Systèmes). Joint motions were taken from kinematic data of activities of daily living that were associated with dislocation of THA, such as stooping to pick an object off the floor and rolling over. The femoral component was positioned to conform within the geometry of the femur, and the acetabular component was orientated in a clinically acceptable position (45° inclination and 20° anteversion). Variation in orientation of the apex of the lip was investigated by rotating about the acetabular axes from the superior (0°) in increments of 45° (0°−315°), and compared to a neutral liner. Results. When a lipped liner was used, implant (neck on acetabular rim) impingement was found to occur when performing sit-to-stand from a normal seat, leg cross and pivot, whereas no impingement occurred with a neutral liner. The presence and position of the lip reduced the impingement-free range of motion, compared to the neutral liner. Impingement occurred when the lip was positioned superiorly and anteriorly, when performing most of the activities that were prone to posterior dislocation, and posteriorly, posterior-superiorly and posterior-inferiorly when performing activities prone to anterior dislocation. During sit-to-stand from a normal seat no impingement occurred when a lipped or neutral liner was used. Bone impingement was observed when the performing the roll activity with both lipped and neutral liners. DISCUSSION. Impingement was observed more with lipped liners compared to neutral liners, this agrees with the findings of some clinical studies. The results indicate that the positioning of the lip influences the possible range of impingement-free motion. Considering this and the improved joint stability of using a lipped liner, a balance is required to achieve an optimal range of motion without increasing the risk of dislocation. This tool could potentially to be used to optimise lipped liner design and position, and could assist with the liner selection for patients based on their activities


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 86 - 86
1 Feb 2020
Dennis D Pierrepont J Bare J
Full Access

Introduction. Instability continues to be the number one reason for revision in primary total hip arthroplasty (THA). Commonly, impingement precedes dislocation, inducing a levering out the prosthetic head from the liner. Impingement can be prosthetic, bony or soft tissue, depending on component positioning and anatomy. The aim of this virtual study was to investigate whether bony or prosthetic impingement occurred first in well positioned THAs, with the hip placed in deep flexion and hyperextension. Methods. Twenty-three patients requiring THA were planned for a TriFit/Trinity ceramic-on-poly cementless construct using the OPS. TM. dynamic planning software (Corin, UK). The cups were sized to best fit the anatomy, medialised to sit on the acetabular fossa and orientated at 45° inclination and 25° anteversion when standing. Femoral components and head lengths were then positioned to reproduce the native anteversion and match the contralateral leg length and offset. The planned constructs were flexed and internally rotated until anterior impingement occurred in deep flexion [Fig. 1]. The type (bony or prosthetic), and location, of impingement was then recorded. Similarly, the hips were extended and externally rotated until posterior impingement occurred, and the type and location of impingement recorded [Fig. 2]. Patients with minimal pre-operative osteophyte were selected as a best-case scenario for bony impingement. Results. 6/23 (26%) patients were planned with only a 32mm articulation (<50mm cup size), with the remaining 17 patients all planned with both 32mm and 36mm articulations (≥50mm cup size). Anterior impingement was 26% prosthetic and 74% bony with the 32mm articulations, and 100% bony with the 36mm articulations. Bony impingement in deep flexion was exclusively anterior neck on anterior inferior iliac spine. Posterior impingement was 57% prosthetic and 43% bony with the 32mm articulations, and 41% prosthetic and 59% bony with the 36mm articulations. Bony impingement in hyperextension was exclusively lesser trochanter (LT) on ischium. Of the patients planned with both 32mm and 36mm articulations, there was a 14% increase in prosthetic impingement when a 32mm head was planned (35% and 21% respectively). Discussion. Impingement in THA usually precedes dislocation and should be avoided with appropriate component positioning. We found that in hyperextension, prosthetic and bony impingement were equally common. In deep flexion, impingement was almost exclusively bony. Further studies should investigate the effects of stem version, cup orientation, liner design, cup depth, native offset and retained osteophytes on the type of impingement in THA. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 21 - 21
1 Mar 2021
Pryce G Al-Hajjar M Thompson J Wilcox R Board T Williams S
Full Access

Abstract. Objectives. Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. Method. A ProSim electro-mechanical single-station hip simulator (Simulation Solutions) was used, and the 32mm diameter metal-on-polyethylene THRs (DePuy Synthes) were assessed. The THR was mounted in an inverted orientation, and the input (motion and loading) applied simulated a patient stooping over to pick an object from the floor[3]. The impingement severity was varied by continuing motion past the point of impingement by 2.5° or 5°, and compressive load applied in the medial-lateral direction was varied from 100N to 200N. Each test condition was applied for 40,000 cycles (n=3). Rim penetration was assessed using a CMM and component separation was measured during the tests. Results. Varying the impingement severity from 2.5° to 5° increased rim penetration two-fold (by >0.05mm) and increased medial-lateral component separation three-fold (by >0.3mm) (both p<0.001). Increasing the medial-lateral load had less effect on the rim penetration and component separation, with exception of rim penetration with the higher impingement severity condition. Conclusion. The impingement severity influenced the medial-lateral component separation, suggesting that increasing the impingement severity could increase the risk of dislocation. The impingement severity, which could be predicted from geometric modelling, was also found to significantly affect rim penetration, meaning this method could be used alongside geometric modelling to predict impingement severity in a range of scenarios. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 49 - 49
2 May 2024
Green J Khanduja V Malviya A
Full Access

Femoroacetabular Impingement (FAI) syndrome, characterised by abnormal hip contact causing symptoms and osteoarthritis, is measured using the International Hip Outcome Tool (iHOT). This study uses machine learning to predict patient outcomes post-treatment for FAI, focusing on achieving a minimally clinically important difference (MCID) at 52 weeks. A retrospective analysis of 6133 patients from the NAHR who underwent hip arthroscopic treatment for FAI between November 2013 and March 2022 was conducted. MCID was defined as half a standard deviation (13.61) from the mean change in iHOT score at 12 months. SKLearn Maximum Absolute Scaler and Logistic Regression were applied to predict achieving MCID, using baseline and 6-month follow-up data. The model's performance was evaluated by accuracy, area under the curve, and recall, using pre-operative and up to 6-month postoperative variables. A total of 23.1% (1422) of patients completed both baseline and 1-year follow-up iHOT surveys. The best results were obtained using both pre and postoperative variables. The machine learning model achieved 88.1% balanced accuracy, 89.6% recall, and 92.3% AUC. Sensitivity was 83.7% and specificity 93.5%. Key variables determining outcomes included MCID achievement at 6 months, baseline iHOT score, 6-month iHOT scores for pain, and difficulty in walking or using stairs. The study confirmed the utility of machine learning in predicting long-term outcomes following arthroscopic treatment for FAI. MCID, based on the iHOT 12 tools, indicates meaningful clinical changes. Machine learning demonstrated high accuracy and recall in distinguishing between patients achieving MCID and those who did not. This approach could help early identification of patients at risk of not meeting the MCID threshold one year after treatment


Bone & Joint Research
Vol. 3, Issue 11 | Pages 321 - 327
1 Nov 2014
Palmer AJR Ayyar-Gupta V Dutton SJ Rombach I Cooper CD Pollard TC Hollinghurst D Taylor A Barker KL McNally EG Beard DJ Andrade AJ Carr AJ Glyn-Jones S

Aims. Femoroacetabular Junction Impingement (FAI) describes abnormalities in the shape of the femoral head–neck junction, or abnormalities in the orientation of the acetabulum. In the short term, FAI can give rise to pain and disability, and in the long-term it significantly increases the risk of developing osteoarthritis. The Femoroacetabular Impingement Trial (FAIT) aims to determine whether operative or non-operative intervention is more effective at improving symptoms and preventing the development and progression of osteoarthritis. . Methods. FAIT is a multicentre superiority parallel two-arm randomised controlled trial comparing physiotherapy and activity modification with arthroscopic surgery for the treatment of symptomatic FAI. Patients aged 18 to 60 with clinical and radiological evidence of FAI are eligible. Principal exclusion criteria include previous surgery to the index hip, established osteoarthritis (Kellgren–Lawrence ≥ 2), hip dysplasia (centre-edge angle < 20°), and completion of a physiotherapy programme targeting FAI within the previous 12 months. Recruitment will take place over 24 months and 120 patients will be randomised in a 1:1 ratio and followed up for three years. The two primary outcome measures are change in hip outcome score eight months post-randomisation (approximately six-months post-intervention initiation) and change in radiographic minimum joint space width 38 months post-randomisation. ClinicalTrials.gov: NCT01893034. Cite this article: Bone Joint Res 2014;3:321–7


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 46 - 46
2 May 2024
Palmer A Fernquest S Logishetty K Rombach I Harin A Mansour R Dijkstra P Andrade T Dutton S Glyn-Jones S
Full Access

The primary treatment goal for patients with femoroacetabular impingement syndrome, a common hip condition in athletes, is to improve pain and function. In selected patients, in the short term following intervention, arthroscopic hip surgery is superior to a pragmatic NHS- type physiotherapy programme. Here, we report the three-year follow-up results from the FemoroAcetabular Impingement Trial (FAIT), comparing arthroscopic hip surgery with physiotherapy in the management of patients with femoroacetabular impingement (FAI) syndrome. Two-group parallel, assessor-blinded, pragmatic randomised controlled study across seven NHS England sites. 222 participants aged 18 to 60 years with FAI syndrome confirmed clinically and radiologically were randomised (1:1) to receive arthroscopic hip surgery (n = 112) or physiotherapy and activity modification (n = 110). We previously reported on the hip outcome score at eight months. The primary outcome measure of this study was minimum Joint Space Width (mJSW) on Anteroposterior Radiograph at 38 months post randomisation. Secondary outcome measures included the Hip Outcome Score and Scoring Hip Osteoarthritis with MRI (SHOMRI) score. Minimum Joint Space Width data were available for 101 participants (45%) at 38 months post randomisation. Hip outcome score and MRI data were available for 77% and 62% of participants respectively. mJSW was higher in the arthroscopy group (mean (SD) 3.34mm (1.01)) compared to the physiotherapy group (2.99mm (1.33)) at 38 months, p=0.017, however this did not exceed the minimally clinically important difference of 0.48mm. SHOMRI score was significantly lower in the arthroscopy group (mean (SD) 9.22 (11.43)) compared to the physiotherapy group (22.76 (15.26)), p-value <0.001. Hip outcome score was higher in the arthroscopy group (mean (SD) 84.2 (17.4)) compared with the physiotherapy group (74.2 (21.9)), p-value < 0.001). Patients with FAI syndrome treated surgically may experience slowing of osteoarthritisprogression and superior pain and function compared with patients treated non- operatively


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 277 - 278
1 May 2006
Abbassian A Giddins G
Full Access

Introduction: Impingement syndrome has been reported to occur in a proportion of patients (9%) following whiplash injuries to the neck. In this study we aim to examine this finding to establish the association and incidence of subacromial impingement following whiplash injuries to the cervical spine. Method and results: We examined 219 patients who had presented to a single surgeon for a medico-legal report, at an average of 13.8 months (range 1–52) following a whiplash injury to the neck. All patients were assessed for clinical evidence of subacromial impingement. The patients were asked if the symptoms had developed following their neck injury and those with past history of shoulder pain were identified and excluded. 56 patients (26%) had shoulder pain following the injury; of these, 11 (5%) had clinical evidence of impingement syndrome, however in the majority other clinicians had overlooked this. The seatbelt shoulder (driver’s right and front passenger’s left) was involved in 9 (82%) of the cases (p< 0.001). The average age was 38.2 years compared with 57.8 years in those with subacromial impingement (p< 0.05). Impingement is therefore likely to be due to direct trauma from the seatbelt in the older age group with an already compromised subacromial space. Conclusion: It is now established that subacromial impingement occurs following whiplash injuries to the neck. This is however, frequently overlooked and shoulder pain is attributed to pain radiating from the neck. It is important that this is appreciated and patients are specifically examined for signs of impingement so that appropriate treatment can be instigated. Direct trauma from the seatbelt is one likely explanation for this association


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 28 - 28
1 May 2019
Pryce G Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and bone geometry variables. This tool has the potential for use in optimising stem design and position and could assist with patient specific stem selection based on an individual's activity profile. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 106 - 106
1 Feb 2020
Wise C Oladokun A Maag C
Full Access

Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical hip simulator (Simulation Solutions, Stockport, Greater Manchester) and an AMTI hydraulic 12-station hip simulator (AMTI, Watertown, MA). Method. Neck impingement testing per ASTM F2582-14 was carried out on four groups of artificially aged acetabular liners (per ASTM F2003-15) made from GUR 1020 UHMWPE which was re-melted and cross-linked at 7.5 Mrad. Group A (n=3) and B (n=3) consisted of 28mm diameter femoral heads articulating on 28mm ID × 44mm OD acetabular liners. Group C (n=3) and D (n=3) consisted of 40mm diameter femoral heads articulating on lipped 40mm ID × 56mm OD 10° face changing acetabular liners. All acetabular liners were tested in production equivalent shell-fixtures mounted at 0° initial inclination angle. Femoral stems were potted in resin to fit respective simulator test fixtures. Testing was conducted in bovine serum diluted to 18mg/mL protein content supplemented with sodium azide and EDTA. Groups A and C were tested on a Prosim; Groups B and D were tested on an AMTI. Physical examination and coordination measurement machine (CMM) analyses were conducted on all liners pre-test and at 0.2 million cycle intervals to monitor possible failure mechanisms. Testing was conducted for 1.0 million cycles or until failure. An Abaqus/Explicit model was created to investigate relative motions and contact areas resulting from initial impingement kinematics for each test group. Results. Effects of kinematic differences in the execution of ASTM F2582-14 were observed in the four groups based on simulator type (Figure 1) and liner design. The Abaqus/Explicit FEA model revealed notable differences in relative motions and contact points (Figure 2) between specimen components i.e. acetabular liner, femoral head, and femoral stem throughout range of motion. Acetabular liner angular change within shell-fixtures, rim deformation, crack propagation, and metal-on-metal contact between acetabular shell-fixtures and femoral stems were observed as potential failure mechanisms (Figure 3) throughout testing. These mechanisms varied in severity by group due to differing contact stresses and simulator constraints. Significance. Investigating failure mechanisms caused by altered kinematics of in-vitro neck impingement testing, due to influences of simulator type and acetabular liner design, may aid understanding of failure mechanisms involved when assessing complaints/retrievals and influence future prosthetic designs. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 30 - 30
1 May 2014
Trousdale R
Full Access

The majority of patients who develop hip arthritis have a mechanical abnormality of the joint. The structural abnormalities range from instability (DDH) to impingement. Impingement leads to osteoarthritis by chronic damage to the acetabular labrum and adjacent cartilage. In situations of endstage secondary DJD, hip arthroplasty is the most reliable treatment choice. In young patients with viable articular cartilage, joint salvage is indicated. Treatment should be directed at resolving the structural abnormalities that create the impingement. Femoral abnormalities corrected by osteotomy or increased head-neck offset by chondro-osteoplasty creating a satisfactory head-neck offset. This can safely be done via anterior surgical dislocation. The acetabular-labral lesions can be debrided and/or repaired. Acetabular abnormalities should be corrected by “reverse” PAO in those with acetabular retroversion or anterior acetabular debridement in those with satisfactory posterior coverage and a damaged anterior rim. Often combinations of the above are indicated. This talk will also update issues related to hip impingement and joint salvage surgery that have arisen over the past year


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 1 - 1
1 Jun 2017
Smeatham A Powell R Moore S Chauhan R Wilson M
Full Access

Research into the treatment of Femoro-Acetabular Impingement (FAI) has focussed on surgical correction of structural abnormalities and tended to overlook the dynamic process of impingement. The role of Physiotherapy in addressing abnormal hip movement and any resulting effect on the symptoms of FAI remains untested. A pilot study was therefore instigated to evaluate the effect of physiotherapy on pain and function in patients with FAI. 30 adults aged between 18 and 50 years with a diagnosis of symptomatic FAI were recruited. 23 (77%) completed the study. Intervention was 3 months of specialist physiotherapy focused on improving pelvic and proximal femoral control. The control group received routine care. All functional outcomes improved in the Physiotherapy group and this included improvement beyond minimal clinically important difference and measurement error on the Hip Outcome Score. There was marginal improvement in pain in both groups. Results suggest that physiotherapy treatment can improve function in adults with symptomatic FAI. Larger studies are needed to evaluate the role of conservative management in FAI


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 203 - 203
1 Mar 2013
Iwai S Kabata T Maeda T Kajino Y Kuroda K Fujita K Tsuchiya H
Full Access

Background. Rotational acetabular osteotomy (RAO) is an effective treatment option for symptomatic acetabular dysplasia. However, excessive lateral and anterior correction during the periacetabular osteotomy may lead to femoroacetabular impingement. We used preoperative planning software for total hip arthroplasty to perform femoroacetabular impingement simulations before and after rotational acetabular osteotomies. Methods. We evaluated 11 hips in 11 patients with available computed tomography taken before and after RAO. All cases were female and mean age at the time of surgery was 35.9 years. All cases were early stage osteoarthritis without obvious osteophytes or joint space narrowing. Radiographic analysis included the center-edge (CE) angle, Sharp's acetabular angle, the acetabular roof angle, the acetabular head index (AHI), cross-over sign, and posterior wall sign. Acetabular anteversion was measured at every 5 mm slice level in the femoral head using preoperative and postoperative computed tomography. Impingement simulations were performed using the preoperative planning software ZedHip (LEXI, Tokyo, Japan). In brief, we created a three-dimensional model. The range of motion which causes bone-to-bone impingement was evaluated in flexion (flex), abduction (abd), external rotation in flex 0°, and internal rotation in flex 90°. The lesions caused by impingement were evaluated. Results. In the radiographic measurements, the CE angle, Sharp's angle, acetabular roof angle, and AHI all indicated improved postoperative acetabular coverage. The cross-over sign was recognized pre- and postoperatively in each case. Acetabular retroversion appeared in one case before RAO and in three cases after RAO. Preoperatively, there was a tendency to reduce the acetabular anteverison angle in the hips from distal levels to proximal. In contrast, there was no postoperative difference in the acetabular anteversion angle at any level. In our simulation study, bone-to-bone impingement occurred in flex (preoperative/postoperative, 137°/114°), abd (73°/54°), external rotation in flex 0°(34°/43°), and internal rotation in flex 90°(70°/36°). Impingement occurred within internal rotation 45°in flexion 90°in two preoperative and eight postoperative cases. The impingement lesions were anterosuperior of the acetabulum in all cases. Discussion. It is easy to make and assess an impingement simulation using preoperative planning software, and our data suggest the simulation was helpful in a clinical setting, though there were some remaining problems such as approximation of the femoral head center and differences in femur movement between the simulation and reality. In the postoperative simulation there was a tendency to reduce the range of motion in flex, abd, and internal rotation in flex 90°. There was a correlation between acetabular anteversion angle and flex. Since impingement occurred within internal rotation 45°in flexion 90°in eight postoperative simulations, we consider there is a strong potential for an increase in femoroacetabular impingement after RAO


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 161 - 161
1 Apr 2005
Funk L Gupta AK
Full Access

The diagnosis of subacromial impingement of the shoulder is generally a clinical diagnosis, with no well defined diagnostic criteria. A number of tests have been described. Neer and Hawkins signs are the most common with reported sensitivities for subacromial impingement of 75% and 92% respectively. The senior author was taught another impingement test by Mr S Copeland during his Fellowship in Reading, UK. The Copeland Impingement test is an extension of the Neer’s impingement sign, where abduction in the scapula plane with the shoulder in internal rotation causes mid-arc pain which is abolished with abduction in external rotation. In a retrospective study we analysed the clinical data of twenty-nine patients diagnosed with subacromial impingement of the shoulder. The diagnosis was determined by the clinician’s final diagnosis. This was based on the clinical findings and response to a subacromial injection (Neer’s Test). The clinical tests included were: Hawkin’s test, Mid-arc impingement pain, Neer’s sign, Neer’s test and the Copeland impingement test. The sensitivity and specificity of each test was determined and the values statistically analysed for any significance. The Copeland test was the most sensitive, with 95% sensitivity. Using the Wilcoxon’s signed ranks test the Copeland test was significantly more sensitive than the Neer’s and Hawkin’s tests for subacromial impingement. In conclusion the Copeland test is an effective clinical test in the diagnosis of subacromial impingement and more sensitive than the traditional tests


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 444 - 444
1 Sep 2009
Lee R Longaray J Essner A Wang A Capello W D’Antonio J
Full Access

Acetabular rim damge due to rim impingement is frequently found on retrievals and may be associated with increased wear and contact stresses, instability, and implant loosening of total hip replacement devices. Large X3 bearings (> 36mm) from Stryker have increased implant range of motion and improved polyethylene material (sequentially crosslinked and annealed). A hip simulator wear study was performed with and without femoral neck to acetabular rim impingement to determine the wear performance of these new bearings under aggressive impingement conditions. Two sizes of these new components were tested (36mm with 3.9mm thickness and 40mm with 3.8mm thickness) with two standard sized controls (28mm with 7.9mm thickness in X3 and conventional polyethylene. The 36mm component was chosen to be the largest component utilizing the same shell as the standard 28mm size components while the 40mm component was chosen to be the thinnest bearing currently offered. Impingement significantly increased wear for all bearings (p< 0.05) but no cracking or failures of the rim occurred. Wear rates for all X3 bearings were statistically indifferent under each testing condition despite bearing size and thickness. Average wear rates for X3 bearings were 0.3mm3/million cycles (mc) under standard conditions and 3.5mm3/mc under impingement conditions. Average wear rates for conventional bearings were 19.5mm3/mc under standard conditions and 48.3mm3/mc under impingement conditions. Overall the X3 bearings exhibited a 93% reduction in wear under impingement conditions and 99% reduction in wear under standard conditions. Increased bearing range of motion reduces the chance of impingement. This study shows the simulated outcome even if these larger bearings were to impinge. We conclude that these larger X3 bearings exhibits the same wear performance as standard X3 bearings and significantly superior wear performance compared to conventional polyethylene bearings under standard and impingement conditions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 25 - 25
1 Dec 2013
Chan N Fuchs C Valle R Adickes M Noble P
Full Access

Introduction:. Femoro-acetabular impingement reduces the range of motion of the hip joint and is thought to contribute to hip osteoarthritis. Surgical treatments attempt to restore hip motion through resection of bone at the head-neck junction. Due to the broad range of morphologies of FAI, the methodology of osteochondroplasty has been difficult to standardize and often results in unexpected outcomes, ranging from minimal improvement in ROM to excessive head resection with loss of cartilage and even neck fracture. In this study we test whether a standardized surgical plan based on a pre-determined resection path can restore normal anatomy and ROM to the CAM-impinging hip. Methods:. Computer models of twelve femora with classic signs of cam-type FAI were reconstructed from CT scans. The femoral shaft and neck were defined with longitudinal axes and the femoral head by a sphere of best fit. Boundaries defining the maximum extent of anterior resection were constructed: (i) superiorly and inferiorly along the anterior femoral neck at 12:30 and 5:30 on the clock face, approximating the locations of the vascularized synovial folds; (ii) around the head-neck junction along the edge of the articular cartilage; and (iii) at the base of the neck, perpendicular to the neck axis, 20–30 mm lateral to the articular edge. All four boundaries were used to form 3 alternative resection surfaces that provided resection depths of 2 mm (small), 4 mm (medium), and 6 mm (large) at the location of the cam lesion. Solid models of each femur after virtual osteochondroplasty were created by Boolean subtraction of each of the resection surfaces from the original femoral model. For each depth of neck resection, we measured the following: (i) alpha angle, (ii) anterior offset of the head-neck junction, and (iii) volume of bone removed. Before and after each resection, we also measured the maximum internal rotation of the hip in 90° flexion and 0° abduction. Results:. The initial alpha angles of the twelve femora averaged 63.8°, with corresponding average anterior head-neck offset of 5.8 mm and average maximum internal rotation of 16.3°. Impingement prevented one specimen from attaining the initial position of 90° flexion and 0° abduction. Implementation of pre-operative plans demonstrated that normal alpha angles (<55°) could be achieved using resection depths of 2 mm, 4 mm, and 6 mm (small: 48.8°, medium: 40.8°, large: 35.3°). The corresponding changes in internal rotation were +7.7° (to 24.0°; p < 0.001), +11.8° (to 28.1°; p < 0.001), and +14.7° (to 31°; p < 0.001), with anterior offsets of 8.0 mm, 9.9 mm, and 11.2 mm, respectively. The corresponding volume of resected bone ranged from 0.57 cm. 3. to 3.20 cm. 3. . Conclusions:. Our study shows that a standardized method of pre-operative planning may enable surgeons to restore normal hip ROM, alpha angles, and anterior offsets through pre-determined bony resection. This method shows how osteochondroplasty can be customized to each deformity, thus removing only the necessary amount of bone to correct each abnormality. We believe implementation of our boundaries and method will enable surgeons to consistently and quantitatively reproduce and teach osteochondroplasty, and that this method is readily adaptable to computerized machining of the femur


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 57 - 57
1 Apr 2018
Clarke I Elsissy J John A Burgett-Moreno M Donaldson T
Full Access

Performance of metal-on-metal (MOM) bearings was of great interest until recently. Major concerns emerged over high incidence of MOM-wear failures and initially there appeared greater risks with MOM total hip arthroplasty (THA) designs compared to resurfacing arthroplasty (RSA). Impingement of the metal neck against the THA cup was likely the differentiating risk. There is a major difference between RSA and THA in (i) size of femoral necks and (ii) risk of THA metal necks impinging on metal cups. For example, a 46mm THA with 12.5mm neck, a 3.68 head:neck (H/N) ratio, provides a suitably large range-of-motion (ROM). In contrast, an RSA patient with retained 31mm size of natural neck would only have H/N = 1.48, indicating even less ROM than a Charnley THA. However, the enigma is that RSA patients have as good or better ROM in majority of clinical studies. We studied this apparent RSA vs THA dilemma by examining MOM retrievals for signs of adverse impingement. We previously described CoCr stripe wear in failed THA bearings, notably alignment of polar and basal wear stripes coincident with the rim profiles of the cups (Clarke 2013). Our governing hypothesis was that RSA patients had to routinely sublux their hips to get ROM comparable to THA. Our THA impingement studies showed polar stripes within 15o of the polar axis in large heads. For the various RSA diameters, we calculated that wear stripes angled 40o from the femoral axis could indicate impingement with no subluxation, whereas smaller angles would indicate routine subluxation of RSA femoral-shell from cup. We compared explanted RSA (N=15) and THA (N=15) bearings representing three vendors (42–54mm diameters). Wear maps and head-stripes were ink-marked for visualization, photography, and analysis. Wear areas were calculated using spherical equations and wear-stripe angles measured by computer graphics. The results showed that RSA femoral shells had wear areas circular in shape with areas varying 1,085- 3,121mm2. These averaged 14% larger than in matched THA heads but statistically significant difference was not proven. Polar stripes were readily identifiable on femoral components, 75% for RSA cases and 100% for THA. These contained identical linear scratches and all were sited within 30o of neck axis, confirming our hypothesis that RSA patients had to sublux their hips to achieve same motion as THA. Examination of cup wear areas revealed all showed ‘edge-loading’, but RSA cups had a significantly greater degree. Retrieval studies are limited by uncontrolled case sources, varied brands, and small numbers. In this study, we were able to match RSA and THA cases by vendor and diameter. The RSA retrievals revealed polar stripes identical to THA by site, topography and inclination to femoral-neck axis. This confirmed our starting hypothesis and explained the large clinical ROM available in RSA patients. The larger wear areas on RSA femoral shells, although not statistically significant, and the larger ‘edge loading’ sites in RSA cups appeared as further support for routine subluxation of femoral-shells during hip impingement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 74 - 74
1 Apr 2017
Raval P Ogollah R Hall A Foster N Roddy E
Full Access

Introduction. Subacromial corticosteroid injection is widely used in the treatment of Subacromial Impingement Syndrome (SIS). There is increasing interest in using ultrasound (US) to improve the accurate placement of injections. This study investigated whether the accuracy of placement of US-guided subacromial corticosteroid injections influences patients' outcome of pain and function. Method. Secondary analysis of data from a 2−2 factorial randomised controlled trial investigating exercise and corticosteroid injection for pain and function in SIS. US-guided injections were delivered according to a pre-defined protocol. Video images were reviewed to categorise accuracy of injection into the subacromial bursa into 3 accuracy groups using pre-defined criteria: 1) not in the subacromial bursa; 2) probably in the subacromial bursa; and 3) definitely in the subacromial bursa. The primary outcome measure was the self-reported Shoulder Pain and Disability Index (SPADI) total score, compared at 6 weeks and 6 months. Secondary outcomes included SPADI pain and function subscales and participant global rating of overall change from baseline. A mixed effects model was used to compare accuracy groups' outcomes at 6 weeks and 6 months, adjusted for baseline covariates. Results. US-guided injection accuracy data were available for 114 participants; with 22 participants in group 1, 21 in group 2 and 71 in group 3. There were no significant differences in mean SPADI scores among the three injection accuracy groups at 6 weeks (group 2 vs. 1: 8.22 (95% CI −4.01, 20.50); group 3 vs. 1: −0.57 (−10.27, 9.13)) and 6 months (group 2 vs. 1: 12.38 (−5.34, 30.10); group 3 vs. 1: 3.10 (−11.04, 17.23)). Similarly, no differences between accuracy groups were seen in SPADI pain, SPADI function or participant global rating of change. Conclusion. The accuracy of US-guided subacromial corticosteroid injection in SIS does not influence clinical response to the injection, questioning the need for guided injections. Larger, adequately powered studies are required to explore this further