Introduction and Objective. Osteochondral allograft (OCA) transplants have been used clinically for more than 40 years as a surgical option for joint restoration, particularly for young and active patients. While immediate graft rejection responses have not been documented, it is believed that the host's immunological responses may directly impact OCA viability, incorporation, integrity, and survival, and therefore, it is of the utmost importance to further optimize OCA transplantation outcomes. The influences of sub-rejection immune responses on OCA transplantation failures have not been fully elucidated therefore aimed to further characterize cellular features of OCA failures using
Chronic lateral ankle instability (CLAI) is treated operatively, whereas acute ligament injury is usually treated nonoperatively. Such treatments have been widely validated. Apoptosis is known to cause ligament degeneration; however, few reports have focused on the possible role of apoptosis in degeneration of ruptured lateral ankle ligaments. The aim of our study is to elucidate the apoptosis that occurs within anterior talofibular ligament (ATFL) to further validate current CLAI treatments by adducing molecular and cellular evidence. Between March 2019 and February 2021, 50 patients were prospectively enrolled in this study. Ruptured ATFL tissues were collected from 21 CLAI patients (group C) and 17 acute ankle fracture patients (group A). Apoptotic cells were counted using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Western blotting for caspases 3, 7, 8, and 9 and cytochrome c, was performed to explore intrinsic and extrinsic apoptotic pathways.
Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and
Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like temperature, pH, osmolarity and mechanical load, they are potentially relevant factors in tendon degeneration as well. We therefore hypothesize that TRP- channels are expressed in tendon cells and respond to degeneration inducing stimuli. By
Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers,
The interleukin-6/gp130-associated Janus Kinases/STAT3 axis is known to play an important role in mediating inflammatory signals, resulting in production of matrix metalloproteinase-3 (MMP-3). The hip joints with rapidly destructive coxopathy (RDC) demonstrate rapid chondrolysis, probably by increased production of MMP-3 observed in the early stage of RDC. In the recent study, no apparent activation of STAT3 has been shown in the synovial tissues obtained from the osteoarthritic joint at operation. However, no data are currently available on STAT3 activation in the synovial tissues in the early stage of RDC. This study aimed to elucidate STAT3 activation in the synovial tissues in the early stage of RDC. Synovial tissues within 7 months from the disease onset were obtained from four RDC patients with femoral head destruction and high serum levels of MMP-3. RDC synovial tissues showed the synovial lining hyperplasia with an increase of CD68-positive macrophages and CD3-positive T lymphocytes. STAT3 phosphorylation was found in the synovial tissues by
The effect of high-fat diet and testosterone replacement therapy upon bone remodelling was investigated in orchiectomised male APOE-/- mice. Mice were split in to three groups: sham surgery + placebo treatment (control, n=9), orchiectomy plus placebo treatment (n=8) and orchiectomy plus testosterone treatment (n=10). Treatments were administered via intramuscular injection once a fortnight for 17 weeks before sacrifice at 25 weeks of age. Tibiae were scanned ex-vivo using µCT followed by post-analysis histology and
As peri-prosthetic aseptic loosening is one of the main causes of implant failure, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL to expand the lifespan of implant. Here, we aim at exploring the role of p110δ, a member of class IA PI3K family, and Krüppel-like factor 4 (KLF4) in titanium particles (TiPs) induced macrophages-inflammation and osteolysis. Firstly, IC87114, the inhibitor of p110δ and siRNA targeting p110δ were applied and experiments including ELISA and immunofluorescence assay were conducted to explore the role of p110δ. Sequentially, KLF4 was predicted as the transcription factor of p110δ and the relation was confirmed by dual luciferase reporter assay. Next, assays including RT-PCR, western blotting and flow cytometry were performed to ensure the specific role of KLF4. Finally, TiPs-induced mice cranial osteolysis model was established, and micro-CT scanning and
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were randomized into 3 groups, with 12 rats per group: sham group (negative control), fixator group (positive control) and Tibial Cortex Transverse Transport group. Laser speckle perfusion imaging, vessel perfusion, histology and
Tendon injuries occur frequently in athletes and the general population, with inferior healing leading to deposition of fibrotic scar tissue. New treatments are essential to limit fibrosis and enable tendon regeneration post-injury. In this study, we tested the hypothesis that rapamycin improves tendon repair and limits fibrosis by inhibiting the mTOR pathway. The left hindlimb of female adult Wistar rats was injured by needle puncture and animals were either given daily injections of rapamycin (2mg/kg) or vehicle. Animals were euthanized 1 week or 3 weeks post-injury (n=6/group). Left and right Achilles tendons were harvested, with the right limbs acting as controls. Tendon sections were stained with haematoxylin & eosin, and scored by 2 blinded scorers, assessing alterations in cellularity, cell morphology, vascularity, extracellular matrix (ECM) organization and peritendinous fibrosis.
Osteoporotic fracture has become a major problem in ageing population and often requires prolonged healing time. Low Intensity Pulsed Ultrasound (LIPUS) can significantly enhance fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). DMP1 in osteocytes is responsible for maintaining LCN and mineralisation. This study aims to investigate osteocyte-specific DMP1's role in enhanced osteoporotic fracture healing in response to mechanical stimulation. Bilateral ovariectomy was performed in 6-month-old female SD rats to induce osteoporosis. Metaphyseal fracture was created at left distal femur using oscillating micro-saw. Rats were randomised to groups: (1) DMP1 KD, (2) DMP1 KD + LIPUS, (3) Control, or (4) Control + LIPUS, where KD stands for knockdown by injection of shRNA into marrow cavity 2 weeks before surgery. Assessments included weekly radiography, microCT and
The development of cytoplasmic processes from in situ chondrocytes is a characteristic feature of early osteoarthritis in human cartilage. The processes involve cytoskeletal elements and are distinct from the short primary cilia described in human chondrocytes. Vimentin is an intermediate filament playing an essential structural and signal-transduction role. We determined cellular levels and distribution of vimentin in chondrocytes of different morphologies in non-degenerate and mildly osteoarthritic cartilage. Femoral heads were obtained after consent from patients undergoing hip arthroplasty following femoral neck fracture. Cartilage explants were graded as non-degenerate (grade 0;G0) or mildly osteoarthritic (grade 1;G1) and labelled with the cytoplasmic dye CMFDA (5-chloromethylfluorescein-diacetate) for cell shape. Explants were cryosectioned and labelled for vimentin by fluorescence
The purpose of this study is to enhance massive bone allografts osseointegration used to reconstruct large bone defects. These allografts show >50% complication rate requiring surgical revision in 20% cases. A new protocol for total bone decellularisation exploiting the vasculature can offer a reduction of postoperative complication by annihilating immune response and improving cellular colonization/ osseointegration. The nutrient artery of 18 porcine bones - humerus/femur/radius/ulna - was cannulated. The decellularization process involved immersion and sequential perfusion with specific solvents over a course of one week. Perfusion was realized by a peristaltic pump (mean flow rate: 6ml/min). The benefit of arterial perfusion was compared to a control group kept in immersion baths without perfusion. Bone samples were processed for histology (HE, Masson's trichrome and DAPI for cell detection),
Introduction and Objective. Alveolar bone resorption following tooth extraction or periodontal disease compromises the bone volume required to ensure the stability of an implant. Guided bone regeneration (GBR) is one of the most attractive technique for restoring oral bone defects, where an occlusive membrane is positioned over the bone graft material, providing space maintenance required to seclude soft tissue infiltration and to promote bone regeneration. However, bone regeneration is in many cases impeded by a lack of an adequate tissue vascularization and/or by bacterial contamination. Using simultaneous spray coating of interacting species (SSCIS) process, a bone inspired coating made of calcium phosphate-chitosan-hyaluronic acid was built on one side of a nanofibrous GBR collagen membrane in order to improve its biological properties. Materials and Methods. First, the physicochemical characterizations of the resulting hybrid coating were performed by scanning electron microscopy, X-ray photoelectron, infrared spectroscopies and high-resolution transmission electron microscopy. Then human mesenchymal stem cells (MSCs) and human monocytes were cultured on those membranes. Biocompatibility and bioactivity of the hybrid coated membrane were respectively evaluated through MSCs proliferation (WST-1 and DNA quantification) and visualization; and cytokine release by MSCs and monocytes (ELISA and endothelial cells recruitment). Antibacterial properties of the hybrid coating were then tested against S. aureus and P. aeruginosa, and through MSCs/bacteria interactions. Finally, a preclinical in vivo study was conducted on rat calvaria bone defect. The newly formed bone was characterized 8 weeks post implantation through μCT reconstructions, histological characterizations (Masson's Trichrome and Von Kossa stain),
Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to age-related injury. Tendons have poor healing capacity and a lack of effective treatments can lead to ongoing pain, reduced function and re-injury. It is therefore important to identify the mechanisms underpinning age-related tendinous changes in order to develop more effective treatments. Our recent single cell sequencing data has shown that tendon cell populations have extensive heterogeneity and cells housed in the tendon interfascicular matrix (IFM) are preferentially affected by ageing. There is, however, a lack of established surface markers for cell populations in tendon, limiting the capacity to isolate distinct cell populations and study their contribution to age-related tendon degeneration. Here, we investigate the presence of the cell surface proteins MET proto-oncogene (MET), integrin subunit alpha 10 (ITGA10), fibroblast activation protein alpha (FAP) and platelet derived growth factor receptor alpha (PDGFRA) in the equine SDFT cell populations and their co-localisation with known markers. Using Western blot we validated the specificity of selected antibodies in equine tissue before performing
Early changes within articular cartilage during human idiopathic osteoarthritis are poorly understood. However alterations to chondrocyte morphology occur with the development of fine cytoplasmic processes and cell clusters, potentially playing a role in cartilage degeneration. The aggrecanase ADAMTS-4 (A disintegrin and metalloproteinase with thrombospondin motifs-4) has been implicated as an important factor in cartilage degradation, so we investigated the relationship between chondrocyte morphology and levels of ADAMTS-4 in both non-degenerate and mildly osteoarthritic human cartilage. Human femoral heads were obtained following consent from patients undergoing hip arthroplasty following femoral neck fracture. Cartilage explants of normal (grade 0; G0) and mildly osteoarthritic (grade 1; G1) cartilage were labelled with the cytoplasmic dye CMFDA (5-chloromethylfluorescein-diacetate). Explants were cryosectioned (30μm sections), and labelled for ADAMTS-4 by fluorescence
The purpose of this study was to evaluate the beneficial effects of r-Irisin (IR) on human primary tenocytes (hTCs) in vitro. Indeed, Irisin is secreted from muscles in response to exercise and mediates many beneficial effects on tissues and organs. Tissue samples (n=3) were analyzed by histology and
In this work, we combined tissue engineering and gene therapy technologies to develop a therapeutic platform for bone regeneration. We have developed photothermal fibrin-based hydrogels that incorporate degradable CuS nanoparticles (CuSNP) which transduce incident near-infrared (NIR) light into heat. A heat-activated and rapamycin-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in the photothermal hydrogels. In the presence of rapamycin, photoinduced mild hyperthermia induced the release of BMP-2 from the NIR responsive cell constructs. Transcriptome analysis of BMP-2 expressing cells showed a signature of induced genes related to stem cell proliferation and angiogenesis. We next generated 4 mm diameter calvarial defects in the left parietal bone of immunocompetent mice. The defects were filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the gene circuit. After one and eight days, rapamycin was administered intraperitoneally followed by irradiation with an NIR laser. Ten weeks after implantation, the animals were euthanized and samples from the bone defect zone were processed for histological analysis using Masson's trichrome staining and for
In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and
Abstract. Cranial cruciate ligament (CrCL) disease/rupture causes pain and osteoarthritis (OA) in dogs. α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-2 and kainate (KA)-1 glutamate receptors (GluR) and the excitatory amino acid transporter-1 (EAAT-1) and EAAT-3 are expressed in joint tissues from OA patients and rodent arthritis models and represent potential therapeutic targets. Objectives. To evaluate glutamate signalling in canine diseased and normal CrCL and meniscus by