Advertisement for orthosearch.org.uk
Results 1 - 20 of 302
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1210 - 1218
14 Sep 2020
Zhang H Guan L Hai Y Liu Y Ding H Chen X

Aims. The aim of this study was to use diffusion tensor imaging (DTI) to investigate changes in diffusion metrics in patients with cervical spondylotic myelopathy (CSM) up to five years after decompressive surgery. We correlated these changes with clinical outcomes as scored by the Modified Japanese Orthopedic Association (mJOA) method, Neck Disability Index (NDI), and Visual Analogue Scale (VAS). Methods. We used multi-shot, high-resolution, diffusion tensor imaging (ms-DTI) in patients with cervical spondylotic myelopathy (CSM) to investigate the change in diffusion metrics and clinical outcomes up to five years after anterior cervical interbody discectomy and fusion (ACDF). High signal intensity was identified on T2-weighted imaging, along with DTI metrics such as fractional anisotropy (FA). MJOA, NDI, and VAS scores were also collected and compared at each follow-up point. Spearman correlations identified correspondence between FA and clinical outcome scores. Results. Significant differences in mJOA scores and FA values were found between preoperative and postoperative timepoints up to two years after surgery. FA at the level of maximum cord compression (MCL) preoperatively was significantly correlated with the preoperative mJOA score. FA postoperatively was also significantly correlated with the postoperative mJOA score. There was no statistical relationship between NDI and mJOA or VAS. Conclusion. ms-DTI can detect microstructural changes in affected cord segments and reflect functional improvement. Both FA values and mJOA scores showed maximum recovery two years after surgery. The DTI metrics are significantly associated with pre- and postoperative mJOA scores. DTI metrics are a more sensitive, timely, and quantifiable surrogate for evaluating patients with CSM and a potential quantifiable biomarker for spinal cord dysfunction. Cite this article: Bone Joint J 2020;102-B(9):1210–1218


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1683 - 1692
1 Dec 2015
Patel A James SL Davies AM Botchu R

The widespread use of MRI has revolutionised the diagnostic process for spinal disorders. A typical protocol for spinal MRI includes T1 and T2 weighted sequences in both axial and sagittal planes. While such an imaging protocol is appropriate to detect pathological processes in the vast majority of patients, a number of additional sequences and advanced techniques are emerging. The purpose of the article is to discuss both established techniques that are gaining popularity in the field of spinal imaging and to introduce some of the more novel ‘advanced’ MRI sequences with examples to highlight their potential uses. Cite this article: Bone Joint J 2015;97-B:1683–92


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1024 - 1031
1 Aug 2012
Rajasekaran S Kanna RM Shetty AP

The identification of the extent of neural damage in patients with acute or chronic spinal cord injury is imperative for the accurate prediction of neurological recovery. The changes in signal intensity shown on routine MRI sequences are of limited value for predicting functional outcome. Diffusion tensor imaging (DTI) is a novel radiological imaging technique which has the potential to identify intact nerve fibre tracts, and has been used to image the brain for a variety of conditions. DTI imaging of the spinal cord is currently only a research tool, but preliminary studies have shown that it holds considerable promise in predicting the severity of spinal cord injury. . This paper briefly reviews our current knowledge of this technique


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 387 - 394
1 Mar 2016
Eguchi Y Oikawa Y Suzuki M Orita S Yamauchi K Suzuki M Aoki Y Watanabe A Takahashi K Ohtori S

Aims. The aim of this study was to evaluate the time course of changes in parameters of diffusion tensor imaging (DTI) such as fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in patients with symptomatic lumbar disc herniation. We also investigated the correlation between the severity of neurological symptoms and these parameters. . Patients and Methods. A total of 13 patients with unilateral radiculopathy due to herniation of a lumbar disc were investigated with DTI on a 1.5T MR scanner and underwent micro discectomy. There were nine men and four women, with a median age of 55.5 years (19 to 79). The changes in the mean FA and ADC values and the correlation between these changes and the severity of the neurological symptoms were investigated before and at six months after surgery. . Results. The mean FA values were significantly lower (p = 0.0005) and mean ADC values were significantly higher (p = 0.0115) in compressed nerves than in intact nerves. Although the FA values increased significantly at six months after surgical treatment (p = 0.020), the ADC values decreased but not significantly (p = 0.498). There were strong correlations between the DTI parameters such as the FA value and the severity of the neurological symptoms as assessed using the Japanese Orthopaedic Association (JOA) score and the Roland-Morris Disability Questionnaire (RDQ). . Conclusion. This preliminary study suggests that it may be possible to use DTI to diagnose, quantitatively evaluate and follow-up patients with lumbar nerve entrapment. Take home message: DTI is a potential tool for functional diagnosis of lumbar nerve damage. Cite this article: Bone Joint J 2016;98-B:387–94


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1007 - 1012
1 Sep 2023
Hoeritzauer I Paterson M Jamjoom AAB Srikandarajah N Soleiman H Poon MTC Copley PC Graves C MacKay S Duong C Leung AHC Eames N Statham PFX Darwish S Sell PJ Thorpe P Shekhar H Roy H Woodfield J

Aims. Patients with cauda equina syndrome (CES) require emergency imaging and surgical decompression. The severity and type of symptoms may influence the timing of imaging and surgery, and help predict the patient’s prognosis. Categories of CES attempt to group patients for management and prognostication purposes. We aimed in this study to assess the inter-rater reliability of dividing patients with CES into categories to assess whether they can be reliably applied in clinical practice and in research. Methods. A literature review was undertaken to identify published descriptions of categories of CES. A total of 100 real anonymized clinical vignettes of patients diagnosed with CES from the Understanding Cauda Equina Syndrome (UCES) study were reviewed by consultant spinal surgeons, neurosurgical registrars, and medical students. All were provided with published category definitions and asked to decide whether each patient had ‘suspected CES’; ‘early CES’; ‘incomplete CES’; or ‘CES with urinary retention’. Inter-rater agreement was assessed for all categories, for all raters, and for each group of raters using Fleiss’s kappa. Results. Each of the 100 participants were rated by four medical students, five neurosurgical registrars, and four consultant spinal surgeons. No groups achieved reasonable inter-rater agreement for any of the categories. CES with retention versus all other categories had the highest inter-rater agreement (kappa 0.34 (95% confidence interval 0.27 to 0.31); minimal agreement). There was no improvement in inter-rater agreement with clinical experience. Across all categories, registrars agreed with each other most often (kappa 0.41), followed by medical students (kappa 0.39). Consultant spinal surgeons had the lowest inter-rater agreement (kappa 0.17). Conclusion. Inter-rater agreement for categorizing CES is low among clinicians who regularly manage these patients. CES categories should be used with caution in clinical practice and research studies, as groups may be heterogenous and not comparable. Cite this article: Bone Joint J 2023;105-B(9):1007–1012


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 11 - 11
7 Aug 2024
Warren JP Khan A Mengoni M
Full Access

Objectives. Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Methods and Results. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected. Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens. Conclusion. An in vitro model showed significant facet movement reduction with stand-alone interbody cage placement. This technique identifies changes in facet movement post-fusion, potentially contributing to subsequent spinal degeneration, highlighting its utility in biomechanical assessment. Conflicts of interest. None. Sources of funding. This work was funded by EPSRC, under grant EP/W015617/1


Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of proteoglycans, water, and general radial bulging but lacks association with microscopic features such as fissure, endplate damage, persistent inflammatory catabolism that facilitates proteoglycan loss leading to ultimate collapse of annulus with neo-innervation and vascularization, as an indicator of pain. Thus, we propose a novel machine learning based imaging tool that combines quantifiable microscopic histopathological features with macroscopic signal intensities changes for hybrid assessment of disc degeneration. Methods. 100-disc tissue were collected from patients undergoing surgeries and cadaveric controls, age range of 35–75 years. MRI Pfirrmann grades were collected in each case, and each disc specimen were processed to identify the 1) region of interest 2) analytical imaging vector 3) data assimilation, grading and scoring pattern 4) identification of machine learning algorithm 5) predictive learning parameters to form an interface between hardware and software operating system. Results. Kernel algorithm defines non-linear data in xy histogram. X,Y values are scored histological spatial variables that signifies loss of proteoglycans, blood vessels ingrowth, and occurrence of tears or fissures in the inner and outer annulus regions mapped with the dampening and graded series of signal intensity changes. Conclusion. To our knowledge this study is the first to propose a machine learning method between microscopic spatial tissue changes and macroscopic signal intensity grades in the intervertebral disc. No conflict of interest declared.  . Sources of Funding. ICMR/5/4-5/3/42/Neuro/2022-NCD-1, Dr TMA PAI SMU/ 131/ REG/ TMA PURK/ 164/2020. A part of the above study was presented as an oral paper at the International Society for the Study of Lumbar Spine (ISSLS) meeting held on 1–5. th. May 2023, Melbourne, Australia


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2022
Compte R Freidin M Williams F
Full Access

Background. Intervertebral disc degeneration (DD) is a complex age-related condition that constitutes the main risk factor for disabling back pain. DD is assessed using different traits extracted from MR imaging (MRI), normally combined to give summary measures (e.g. Pfirmann score). The aetiology of DD is poorly understood and despite its high heritability (75%), the precise genetic predisposition is yet to be defined. Genome wide association study (GWAS) is used to discover genetic variants associated with a disease or phenotype. It tests variants across the whole genome. It requires large samples to provide adequate but unfortunately there is poor availability of spine imaging data due to the high cost of MRI. We have adopted new methods to examine different MRI traits independently and use the information of those traits to boost GWAS power using specialized statistical software for jointly analyse correlated traits. Methods/Results. We examined DD MRI features disc narrowing, disc bulge, disc signal intensity and osteophyte formation in the TwinsUK cohort who had undergone T2-weighted sagittal spine MRI. GWAS were performed on the four traits. MTAG software was used to boost single trait GWAS power using the information in the other trait GWAS. 9 different loci were identified. Conclusions. Preliminary results suggest genes GDF6, SP1/SP7 are associated with individual trait signal intensity. In addition, novel associated genes with potential for shedding new light on pathogenic mechanisms are identified. Additional cohorts will be included in the design as a replication to test reproducibility of the results. Conflicts of interest: No conflicts of interest. Sources of funding: Funded by Disc4All, EU Horizon 2020, MSCA-2020-ITN-ETN GA: 955735


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 715 - 720
1 Jun 2022
Dunsmuir RA Nisar S Cruickshank JA Loughenbury PR

Aims. The aim of the study was to determine if there was a direct correlation between the pain and disability experienced by patients and size of their disc prolapse, measured by the disc’s cross-sectional area on T2 axial MRI scans. Methods. Patients were asked to prospectively complete visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores on the day of their MRI scan. All patients with primary disc herniation were included. Exclusion criteria included recurrent disc herniation, cauda equina syndrome, or any other associated spinal pathology. T2 weighted MRI scans were reviewed on picture archiving and communications software. The T2 axial image showing the disc protrusion with the largest cross sectional area was used for measurements. The area of the disc and canal were measured at this level. The size of the disc was measured as a percentage of the cross-sectional area of the spinal canal on the chosen image. The VAS leg pain and ODI scores were each correlated with the size of the disc using the Pearson correlation coefficient (PCC). Intraobserver reliability for MRI measurement was assessed using the interclass correlation coefficient (ICC). We assessed if the position of the disc prolapse (central, lateral recess, or foraminal) altered the symptoms described by the patient. The VAS and ODI scores from central and lateral recess disc prolapses were compared. Results. A total of 56 patients (mean age 41.1 years (22.8 to 70.3)) were included. A high degree of intraobserver reliability was observed for MRI measurement: single measure ICC was 0.99 (95% confidence interval (CI) from 0.97 to 0.99 (p < 0.001)). The PCC comparing VAS leg scores with canal occupancy for herniated disc was 0.056. The PCC comparing ODI for herniated disc was 0.070. We found 13 disc prolapses centrally and 43 lateral recess prolapses. There were no foraminal prolapses in this group. The position of the prolapse was not found to be related to the mean VAS score or ODI experienced by the patients (VAS, p = 0.251; ODI, p = 0.093). Conclusion. The results of the statistical analysis show that there is no direct correlation between the size or position of the disc prolapse and a patient’s symptoms. The symptoms experienced by patients should be the primary concern in deciding to perform discectomy. Cite this article: Bone Joint J 2022;104-B(6):715–720


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 4 - 4
1 Oct 2022
Nagington A Foster N Snell K Konstantinou K Stynes S
Full Access

Background. Clinical guidelines recommend epidural steroid injection (ESI) as a treatment option for severe disc-related sciatica, but there is considerable uncertainty about its effectiveness. Currently, we know very little about factors that might be associated with good or poor outcomes from ESI. The aim of this systematic review was to synthesize and appraise the evidence investigating prognostic factors associated with outcomes following ESI for patients with imaging confirmed disc-related sciatica. Methods. The search strategy involved the electronic databases Medline, Embase, CINAHL Plus, PsycINFO and reference lists of eligible studies. Selected papers were quality appraised independently by two reviewers using the Quality in Prognosis Studies (QUIPS) tool. Between study heterogeneity precluded statistical pooling of results. Results. 2726 citations were identified; 11 studies were eligible. Overall study quality was low with all judged to have moderate or high risk of bias. Forty-five prognostic factors were identified but were measured inconsistently. The most commonly assessed prognostic factors were related to pain and function (n=7 studies), imaging features (n=6 studies), health and lifestyle (n=5 studies), patient demographics (n=4 studies) and clinical assessment findings (n=4 studies). No prognostic factor was found to be consistently associated with outcomes following ESI. Most studies found no association or results that conflicted with other studies. Conclusions. There is little, and low quality, evidence to guide practice in terms of factors that predict outcomes in patients following ESI for disc-related sciatica. The results can help inform some of the decisions about potential prognostic factors that should be assessed in future well-designed prospective cohort studies. Conflicts of interest: No conflicts of interest. Sources of funding: This study is supported by Health Education England and the National Institute for Health Research (HEE/ NIHR ICA Programme Clinical Lectureship, Dr Siobhan Stynes, NIHR300441). The views expressed are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 12 - 12
1 Sep 2021
Rose L Williams R Al-Ahmed S Fenner C Fragkakis A Lupu C Ajayi B Bernard J Bishop T Papadakos N Lui DF
Full Access

Background. The advent of EOS imaging has offered clinicians the opportunity to image the whole skeleton in the anatomical standing position with a smaller radiation dose than standard spine roentgenograms. It is known as the fifth modality of imaging. Current NICE guidelines do not recommend EOS scans over x-rays citing: “The evidence indicated insufficient patient benefit in terms of radiation dose reduction and increased throughput to justify its cost”. Methods. We retrospectively reviewed 103 adult and 103 paediatric EOS scans of standing whole spines including shoulders and pelvis for those undergoing investigation for spinal deformity in a tertiary spinal centre in the UK. We matched this against a retrospective control group of 103 adults and 103 children who underwent traditional roentgenograms whole spine imaging at the same centre during the same timeframe. We aimed to compare the average radiation dose of AP and lateral images between the two modalities. We utilised a validated lifetime risk of cancer calculator (. www.xrayrisk.com. ) to estimate the additional mean risk per study. Results. In the Adult EOS Group (AEG) the mean estimated effective dose of AP was 0.08 mSv (0.04–0.15) and Lateral 0.06 mSv (0.03–0.14). Conversely in the Adult Roentgenograms Group (ARG) the mean AP was 0.49 mSv (0.15–1.88) and Lateral was 0.29 mSv (0.07–1.20). In the Paediatric EOS Group (PEG): the mean dose of AP was 0.07 mSv (0.02–0.21) and Lateral 0.04 mSv (0.02–0.11). Conversely Paediatric Roentgenograms Group (PRG) had a mean dose in AP of 0.37 mSv (0.03–5.92) and in lateral of 0.17 mSv (0.03–0.44). The percentage differences were: ARG:AES AP 613%, ARG:AES Lat 483%, PPG:PEG AP 529%, PRG:PEG Lat 425%. Mean difference 513%. The additional lifetime cancer risk for AEG was 1 in 176056 for males and 1 in 138696 for females, compared to ARG 1 in 31596 for males and 1 in 24894 for females. In PEG that was 1 in 58207 for boys and 1 in 33367 for girls, compared to PRG 1 in 11860 for boys and 1 in 6797 in girls. Differences in additional lifetime risk of cancer per scan: ARG:AES Male 557%, Female 557%, PRG:PEG Male 491%, Females 491%. Conclusion. Standard plain film imaging of the whole spine requires approximately five-times higher doses of radiation compared to dual planar EOS scans. This carries a significant impact when considering the need for repeat imaging on additional lifetime malignancy risk in both children and adults. There is approximately 5-fold increase in risk of cancer for all groups with roentgenograms over EOS. We directly challenge the NICE guidance and recommend EOS dual planar imaging in favour of plane roentgenograms for investigation of spinal deformity


Bone & Joint Open
Vol. 4, Issue 11 | Pages 832 - 838
3 Nov 2023
Pichler L Li Z Khakzad T Perka C Pumberger M Schömig F

Aims. Implant-related postoperative spondylodiscitis (IPOS) is a severe complication in spine surgery and is associated with high morbidity and mortality. With growing knowledge in the field of periprosthetic joint infection (PJI), equivalent investigations towards the management of implant-related infections of the spine are indispensable. To our knowledge, this study provides the largest description of cases of IPOS to date. Methods. Patients treated for IPOS from January 2006 to December 2020 were included. Patient demographics, parameters upon admission and discharge, radiological imaging, and microbiological results were retrieved from medical records. CT and MRI were analyzed for epidural, paravertebral, and intervertebral abscess formation, vertebral destruction, and endplate involvement. Pathogens were identified by CT-guided or intraoperative biopsy, intraoperative tissue sampling, or implant sonication. Results. A total of 32 cases of IPOS with a mean patient age of 68.7 years (37.6 to 84.1) were included. Diabetes, age > 60 years, and history of infection were identified as risk factors. Patient presentation upon admission included a mean body temperature of 36.7°C (36.1 to 38.0), back pain at rest (mean visual analogue scale (VAS) mean 5/10) and when mobile (mean VAS 6/10), as well as elevated levels of CRP (mean 76.8 mg/l (0.4 to 202.9)) and white blood cell count (mean 9.2 units/nl (2.6 to 32.8)). Pathogens were identified by CT-guided or conventional biopsy, intraoperative tissue sampling, or sonication, and Gram-positive cocci presented as the most common among them. Antibiotic therapy was established in all cases with pathogen-specific treatment in 23 (71.9%) subjects. Overall 27 (84.4%) patients received treatment by debridement, decompression, and fusion of the affected segment. Conclusion. Cases of IPOS are rare and share similarities with spontaneous spondylodiscitis. While procedures such as CT-guided biopsy and sonication are valuable tools in the diagnosis of IPOS, MRI and intraoperative tissue sampling remain the gold standard. Research on known principles of PJI such as implant retention versus implant exchange need to be expanded to the field of spine surgery. Cite this article: Bone Jt Open 2023;4(11):832–838


Bone & Joint Open
Vol. 4, Issue 8 | Pages 573 - 579
8 Aug 2023
Beresford-Cleary NJA Silman A Thakar C Gardner A Harding I Cooper C Cook J Rothenfluh DA

Aims. Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. Methods. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients. Results. Of the 90 patients screened, 77 passed the initial screening criteria. A total of 27 patients had a PI-LL mismatch and 23 had a dynamic spondylolisthesis. Following secondary inclusion and exclusion criteria, 31 patients were eligible for the study. Six patients were randomized and one underwent surgery during the study period. Given the low number of patients recruited and randomized, it was not possible to assess completion rates, quality of life, imaging, or health economic outcomes as intended. Conclusion. This study provides a unique insight into the prevalence of dynamic spondylolisthesis and PI-LL mismatch in patients with symptomatic spinal stenosis, and demonstrates that there is a need for a definitive RCT which stratifies for these groups in order to inform surgical decision-making. Nonetheless a definitive study would need further refinement in design and implementation in order to be feasible. Cite this article: Bone Jt Open 2023;4(8):573–579


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 315 - 322
1 Mar 2023
Geere JH Swamy GN Hunter PR Geere JL Lutchman LN Cook AJ Rai AS

Aims. To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation. Methods. A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs). Results. Complete baseline data capture was available for 733 of 754 (97.2%) consecutive patients. Median follow-up time for censored patients was 2.2 years (interquartile range (IQR) 1.0 to 5.0). sRDH occurred in 63 patients at a median 0.8 years (IQR 0.5 to 1.7) after surgery. The five-year Kaplan-Meier estimate for sRDH was 12.1% (95% CI 9.5 to 15.4), sRDH reoperation was 7.5% (95% CI 5.5 to 10.2), and any-procedure reoperation was 14.1% (95% CI 11.1 to 17.5). Current smoker (HR 2.12 (95% CI 1.26 to 3.56)) and higher preoperative ODI (HR 1.02 (95% CI 1.00 to 1.03)) were independent risk factors associated with sRDH. Current smoker (HR 2.15 (95% CI 1.12 to 4.09)) was an independent risk factor for sRDH reoperation. Conclusion. This is one of the largest series to date which has identified current smoker and higher preoperative disability as independent risk factors for sRDH. Current smoker was an independent risk factor for sRDH reoperation. These findings are important for spinal surgeons and rehabilitation specialists in risk assessment, consenting patients, and perioperative management. Cite this article: Bone Joint J 2023;105-B(3):315–322


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 31 - 31
7 Aug 2024
Williams J Meakin J Whitehead N Mills A Williams D Ward M Kelly E Shillabeer D Javadi A Holsgrove T Holt C
Full Access

Background. Our current research aims to develop technologies to predict spinal loads in vivo using a combination of imaging and modelling methods. To ensure the project's success and inform future applications of the technology, we sought to understand the opinions and perspectives of patients and the public. Methods. A 90-minute public and patient involvement event was developed in collaboration with Exeter Science Centre and held on World Spine Day 2023. The event involved a brief introduction to the project goals followed by an interactive questionnaire to gauge the participants’ background knowledge and interest. The participants then discussed five topics: communication, future directions of the research, concerns about the research protocol, concerns about data, and interest in the project team and research process. A final questionnaire was used to determine their thoughts about the event. Results. Twelve adults attended the event, many motivated by their experience or interest in back pain. A thematic analysis was used to review participant comments on the research project, identifying the need to relate the research to everyday life, present risks in various ways, and be transparent about funding and data sharing. In terms of future applications, participants felt the technology should be used to understand normal spine behaviour, prevent problems, and improve treatment. Participants agreed that they had got something positive out of engaging in the event. Conclusion. Engagement with public and patient stakeholders is an essential activity that can generate vital information to inform and add value to technology development projects. Conflicts of interest. No conflicts of interest. Sources of funding. EPSRC grants EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 19 - 19
7 Aug 2024
Foster NE Bada E Window P Stovell M Ahuja S Beard D Gardner A
Full Access

Background and Purpose. The UK's NIHR and Australia's NHMRC have funded two randomised controlled trials (RCTs) to determine if lumbar fusion surgery (LFS) is more effective than best conservative care (BCC) for adults with persistent, severe low back pain (LBP) attributable to lumbar spine degeneration. We aimed to describe clinicians’ decision-making regarding suitability of patient cases for LFS or BCC and level of equipoise to randomise participants in the RCTs. Methods. Two online cross-sectional surveys distributed via UK and Australian professional networks to clinicians involved in LBP care, collected data on clinical discipline, practice setting and preferred care of five patient cases (ranging in age, pain duration, BMI, imaging findings, neurological signs/symptoms). Clinicians were also asked about willingness to randomise each patient case. Results. Of 174 responses (73 UK, 101 Australia), 70 were orthopaedic surgeons, 34 neurosurgeons, 65 allied health professionals (AHPs), 5 others. Most worked in public health services only (92% UK, 45% Australia), or a mix of public/private (36% Australia). Most respondents chose BCC as their first-choice management option for all five cases (81–93% UK, 83–91% Australia). For LFS, UK surgeons preferred TLIF (36.4%), whereas Australian surgeons preferred ALIF (54%). Willingness to randomise cases ranged from 37–60% (UK mean 50.7%), and 47–55% (Australian mean 51.9%); orthopaedic and neuro-surgeons were more willing than AHPs. Conclusion. Whilst BCC was preferred for all five patient cases, just over half of survey respondents in both the UK and Australia were willing to randomise cases to either LFS or BCC, indicating clinical equipoise (collective uncertainty) needed for RCT recruitment. Conflicts of interest. None. Sources of funding. No specific funding obtained for the surveys. DB, SA, AG and NEF have funding from the National Institute for Health Research (NIHR) UK (FORENSIC-UK NIHR134859); NEF, DB and SA have funding from the Australian National Health and Medical Research Council (NHMRC FORENSIC-Australia GA268233). AG has funding from Orthopaedic Research UK (combined with British Association of Spine Surgeons and British Scoliosis Society) and Innovate UK. NEF is funded through an Australian National Health and Medical Research Council (NHMRC) Investigator Grant (ID: 2018182)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 1 - 1
23 Jan 2023
Cottam A Van Herwijnen B Davies EM
Full Access

We present a large single surgeon case series evaluation of a new growth guidance technique for the treatment of progressive early onset scoliosis (EOS). A traditional Luque trolley construct uses wires to hold growth guidance rods together. We describe a new technique that uses domino end to side connectors in place of the wires with the aim of providing a stronger construct to better limit curve progression, while allowing longitudinal growth. We did a thorough retrospective review of patient records and radiological imaging. Sequential measurements of Cobb angle and length of rods were recorded, as well as any further surgical procedures and associated complications. This enabled us to quantify the ability of a technique to limit curve progression and simultaneously allow growth of the construct. In total, 28 patients with EOS (20 idiopathic, four syndromic, and four neuromuscular) have been treated with this technique, 25 of whom have a minimum follow-up of 2 years and 13 have a minimum follow-up of 5 years. The average correction of the preoperative Cobb angle was 48.9%. At the 2-year follow up, the average loss of this initial correction was 15 degrees, rising to only 20 degrees at a minimum of 5 years (including four patients with a follow-up of 8 years or more). The growth of the constructs was limited. The average growth at 2 years was 3.7 mm, rising to 19 mm at the 5-year follow-up. Patients who underwent surgery with this technique before the age of 8 years seemed to do better. This group had a revision rate of only 18% at an average time of 7 years after the index procedure, and the average growth was 22 mm. However, the group that had index surgery after the age of 8 years had a 64% revision rate at an average of 3.2 years after surgery and an average growth of only 11.6 mm. Overall, in the cases series, there were four hardware failures (14%) and one deep infection (3.5%), and only ten patients (36%) had one extra surgery after the index procedure. Only two of the 13 patients who are at a follow-up of 5 years or more have had revision. This modified Luque trolley technique has a good capacity for initial curve correction and for limiting further curve progression, with limited longitudinal growth before 2 years and improved growth thereafter. This technique might not be so useful after the age of 8 years because of poor growth and a higher early revision rate. We have also demonstrated a low cost technique with a low hardware failure rate that saves many future surgeries for the patient compared with other techniques used in the treatment of EOS


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2022
Bell J Owen D Meek K Terrill N Sanchez-Weatherby J Le Maitre C
Full Access

Background. An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load. Methodology. IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%). Results. IVD tissue regions exhibited structural “AF-like” and “NP-like” fingerprints. Demonstrating high internal strains on collagen fibres particularly within the NP region of the disc. AF and NP regions showed distinct collagen orientation and internal strains with an apparent lack of bracing structure seen at the interface between the differential mechanical tissues. X-ray scattering under tensile strain provided structural information at high resolution, with clear differences observed between normal and degenerate discs under load. Conclusion. X ray scattering has been utilised to develop an improved understanding of collagen structure across the intervertebral disc which can be utilised to gain an increased understanding of load induced propagation of micro fissures and disc degeneration. Conflict of Interest: No conflict of interest. Funding: BioPro Network, UCL for funding this study through support from the MRC (MR/R025673/1)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 31 - 31
1 Oct 2022
Alharthi S Meakin J Fulford J
Full Access

Purpose of study and background. Spinal muscle area (SMA) is often employed to assess muscle functionality and is important for understanding the risk individuals may have of developing back pain or the risk of postural instability and falls.. However, handgrip strength (HGS) has also been utilized as a measure of general muscle capacity. This study aimed to examine the relationship between SMA and HGS to assess whether the latter could be used as an accurate indicator of the former. Methods. 150 participants (75 males and 75 females, aged 47–70 years) were selected from the UK Biobank dataset. Handgrip strength values were extracted and averaged over left and right values. Abdominal MRI images were examined and cross-sectional area of the erector spinae and multifidus determined at the L3/4 level and summed to provide a total muscle area. Results. HGS and SMA (mean±sd) were 39.6 ± 7.4 kg and 4664 ± 868 mm. 2. for males and 24.7 ± 5.9 kg, and 3822 ± 579 mm. 2. for females. Pearson correlation between HGS and SMA was r = 0.41 for males (p = <0.001), r = 0.40 for females (p = <0.001), and r = 0.61 for the combined groups (p<0.001). Conclusion. Significant correlations were found between HGS and SMA for individual sexes and combined groups. However, although HGS may be a useful measure for predicting modifications in group responses in spinal muscle function, for example, following an intervention, it does not have the power to confidently predict muscle values at an individual participant level. Conflicts of interest: No conflicts of interest. Sources of funding: Prince Sattam University, KSA, provided a PhD scholarship for Salman Alharthi