Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 3, Issue 6 | Pages 212 - 216
1 Jun 2014
McConaghie FA Payne AP Kinninmonth AWG

Objectives. Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip replacement. The aim of this study was to determine the anatomical relationship between retractor placement and these nerves. Methods. A posterior approach to the hip was carried out in six fresh cadaveric half pelves. Large Hohmann acetabular retractors were placed anteriorly, over the acetabular lip, and inferiorly, and their relationship to the femoral and obturator nerves was examined. Results. If contact with bone was not maintained during retractor placement, the tip of the anterior retractor had the potential to compress the femoral nerve by passing superficial to the iliopsoas. If pressure was removed from the anterior retractor, the tip pivoted on the anterior acetabular lip, and passed superficial to the iliopsoas, overlying and compressing the femoral nerve, when pressure was reapplied. The inferior retractor pierced the obturator membrane in all specimens medial to the obturator nerve, with subsequent retraction causing the tip to move laterally, making contact with the nerve. . Conclusion. Iliopsoas can only offer protection to the femoral nerve if the retractor passes deep to the muscle bulk. The anterior retractor should be reinserted if pressure is removed intra-operatively. Vigorous movement of the inferior retractor should be avoided. Cite this article: Bone Joint Res 2014;3:212–6


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 57 - 57
1 Aug 2013
McConaghie F Payne A Kinninmonth A
Full Access

Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip arthroplasty (THA). Despite this association, the anatomical relationship between retractor and nerve has not been elucidated. A posterior approach to the hip was carried out in 6 fresh frozen cadaveric hemi- pelvises. Large Hohmann acetabular retractors were placed anteriorly over the acetabular rim, and inferiorly, as per routine practice in THA. The femoral and obturator nerves were identified through dissection and their relationship to the retractors was examined. If contact with bone was not maintained during retractor placement, the tip of the anterior retractor had the potential to compress the femoral nerve, by passing either superficial to, or through the bulk of the iliopsoas muscle. If pressure was removed from the anterior retractor, the tip pivoted on the anterior acetabular lip, and passed superficial to iliopsoas, overlying and compressing the femoral nerve, when pressure was reapplied. The inferior retractor pierced the obturator membrane, medial to the obturator foramen in all specimens. Subsequent retraction resulted in the tip moving laterally to contact the obturator nerve. Both the femoral and obturator nerves are vulnerable to injury around the acetabulum through the routine placement of retractors in THA. The femoral nerve is vulnerable where it passes over the anterior acetabulum. Iliopsoas can only offer protection if the retractor passes deep to the muscle bulk. If pressure is removed from the anterior retractor intra-operatively it should be reinserted. The obturator nerve is vulnerable as it exits the pelvis through the obturator foramen. Vigorous movement of the inferior retractor should be avoided. Awareness of the anatomy around the acetabulum is essential when placing retractors


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 141 - 144
1 Jan 2002
Petersen W Hohmann G Stein V Tillmann B

We studied the vascular pattern of human posterior tibial tendons by injection techniques and immunohistochemically using antibodies against laminin. The intravascular volume of the posterior tibial tendon was determined using a new method of injection of a solution of 99mTc and gelatin ink into the lower legs of cadavers. Three segments of 1 cm length from different regions of the human posterior tibial tendon were measured using a gamma well counter.

The main blood supply arises from the posterior tibial artery. Blood vessels enter the paratenon of the posterior tibial tendon via a mesotenon from the posterior aspect. From the paratenon, the blood vessels penetrate the posterior tibial tendon and anastomose with a longitudinally orientated intratendinous network. The number of vessels in the substance of the tendon is consistently less than that in the surrounding paratenon. The distribution of blood vessels within the posterior tibial tendon is not homogeneous. In the retromalleolar region the intravascular volume was significantly reduced with a mean value of 15 μl/g of tendon tissue. There was no significant difference between the mean intravascular volumes of the proximal and distal areas (distal, 27.7 μl/g tendon tissue; proximal, 30 μl/g tendon tissue). The immunohistochemical investigation showed that there was no immunostaining for laminin in the anterior part of the tendon in the region where it passes behind the medial malleolus. This region is avascular.

The most frequent site of rupture of the posterior tibial tendon is in the region behind the medial malleolus. A potential endogenous risk factor may be the limited healing potential of avascular tissue.