Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development.
Aims. To explore the novel molecular mechanisms of
Background. Long-term glucocorticoid treatment increases incidence of osteoporotic or osteonecrotic disorders. Excessive bone loss and marrow fat accumulation are prominent features of glucocorticoid-induced osteoporosis. MicroRNA-29 (miR-29) family members reportedly modulate lineage commitment of stem cells. This study was undertaken to define the biological roles of miR-29a in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Methods. Osteoblast-specific miR-29a transgenic mice (Tg) driven by osteocalcin promoter (C57BL/6JNarl-TgOCN-mir29a) or wild-type (WT) mice were given methylprednisolone. Bone mass, trabecular and cortical bone microarchitecture were assessed by μCT. Comparative mRNA and protein expression was quantified by RT-PCR and immunoblotting. Primary bone-marrow mesenchymal cells were isolated for elucidating ex vivo osteogenic and adipogenic differentiation capacity. Results. Decremented miR-29a expression was associated with severe skeletal deterioration and excessive marrow adipogenesis in glucocorticoid-induced osteoporosis bone tissue. Tg mice had high bone mass, spacious trabecular bone and thick cortical bone microstructure. Tg mice also had modest responses to the deleterious actions of glucocorticoid on trabecular microstructure and histomorphological characteristics, mineral acquisition and attenuated marrow fat deposition and osteoclast resorption. Ex vivo, miR-29a overexpression promoted bone-marrow mesenchymal progenitor cells differentiation towards osteogenic cells and away from adipogenic lineage cells. Mechanistically, miR-29a via inhibiting
Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p.Aims
Methods
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article:
This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software.Objectives
Methods