Advertisement for orthosearch.org.uk
Results 1 - 20 of 344
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 556 - 561
1 May 2008
Glyn-Jones S McLardy-Smith P Gill HS Murray DW

The creep and wear behaviour of highly cross-linked polyethylene and standard polyethylene liners were examined in a prospective, double-blind randomised, controlled trial using radiostereometric analysis. We randomised 54 patients to receive hip replacements with either highly cross-linked polyethylene or standard liners and determined the three-dimensional penetration of the liners over three years. After three years the mean total penetration was 0.35 mm (SD 0.14) for the highly cross-linked polyethylene group and 0.45 mm (SD 0.19) for the standard group. The difference was statistically significant (p = 0.0184). From the pattern of penetration it was possible to discriminate creep from wear. Most (95%) of the creep occurred within six months of implantation and nearly all within the first year. There was no difference in the mean degree of creep between the two types of polyethylene (highly cross-linked polyethylene 0.26 mm, SD 0.17; standard 0.27 mm, SD 0.2; p = 0.83). There was, however, a significant difference (p = 0.012) in the mean wear rate (highly cross-linked polyethylene 0.03 mm/yr, SD 0.06; standard 0.07 mm/yr, SD 0.05). Creep and wear occurred in significantly different directions (p = 0.01); creep was predominantly proximal whereas wear was anterior, proximal and medial. We conclude that penetration in the first six months is creep-dominated, but after one year virtually all penetration is due to wear. Highly cross-linked polyethylene has a 60% lower rate of wear than standard polyethylene and therefore will probably perform better in the long term


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 69 - 69
23 Jun 2023
Buckner BC Urban ND Cahoy KM Garvin KL
Full Access

Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year HXLPE wear rates and the clinical outcome of patients in this group and compare this population to a control group of cobalt chrome and ceramic. One hundred forty THAs were performed for 123 patients using an Oxinium head with an HXLPE liner. Ninety-seven had 10 years of clinical follow-up (avg. 14.5). Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up. Radiographs of 85 hips were available for a minimum 10-year follow-up (avg. 14.5) and used to calculate wear using PolyWare software. Control groups of cobalt chrome and ceramic articulation on HXLPE with a minimum 10-year follow-up were studied. Clinical follow-up of the Oxinium group showed a statistical improvement compared to preoperative and was similar to the control group of patients. Radiographic evaluation found the linear and volumetric wear rates for the Oxinium group of 0.03 mm/year (range 0.00–0.08) and 3.46 mm. 3. /year (range 1.0 to 15.0) respectively. There was no statistically significant difference in linear or volumetric wear rate between the groups (P-value 0.92 and 0.55 respectively). None of these patients underwent revision of their hip for any reason. Oxinium on highly cross-linked polyethylene has performed exceptionally with wear rates comparable to those of cobalt chrome or ceramic on HXLPE


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 383 - 383
1 Dec 2013
Kurdziel M Peers S Moravek J Budge M Newton M Baker K Wiater JM
Full Access

Purpose:. Although short term outcomes of reverse total shoulder arthroplasty (rTSA) have been promising, long-term success may be limited due to complications, including scapular notching. Scapular notching has been explained primarily as a mechanical erosion, however, generation of wear debris may lead to further biologic changes contributing to the severity of scapular notching. Highly cross-linked ultra-high molecular weight polyethylene (UHMWPE) has been used routinely in constrained joint applications such as total hip arthroplasty for reduction of wear debris particles. Although rTSA shares similarity in design conformity, conventional UHMWPE remains the gold standard. Methods:. A commercially available hip simulator was converted to a 12-station rTSA wear simulator. Conventional and highly cross-linked UHMWPE humeral liners were subjected to 5,000,000 cycles of alternating abduction-adduction and flexion-extension loading profiles. Every 250,000 cycles, liners were evaluated with gravimetric wear measurements and test serum was collected for morphological characterization of wear particles. Results:. Highly cross-linked UHMWPE liners (36.5 ± 10.0 mm. 3. /million cycle) exhibited significantly lower volumetric wear rates compared to conventional UHMWPE liners (83.6 ± 20.6 mm3/million cycle) (p < 0.001) (Figure 1). The flexion-extension loading profile exhibited significantly higher wear rates for both conventional (p < 0.001) and highly cross-linked UHMWPE (p < 0.001) compared to the abduction-adduction loading profile. Highly cross-linked wear particles had an equivalent circle diameter significantly smaller than wear particles from conventional UHMWPE (p < 0.001) (Figure 2). Highly cross-linked wear particles were also significantly less fibrillar than conventional UHMWPE particles with respect to particle aspect ratio (p < 0.001) and particle roundness (p < 0.001). Conclusion:. This is the first study to examine the effect of cross-linked PE in a rTSA wear simulation. Highly cross-linked UHMWPE liners significantly reduced UHWMPE wear and subsequent particle generation. More favorable wear properties with the use of highly cross-linked UHMWPE may lead to increased rTSA device longevity and fewer complications but must be weighed against the impact of reduced mechanical properties


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 242 - 242
1 Mar 2004
Rabenseifner L
Full Access

Aims: Hipsimulator tests with highly cross-linked PE shows excellent results after 20 million cycles. Since March 99 we implanted hips with the Fitmore-Cup, Durasul-Inlay and an anatomical stem. In vivo investigations with 300 hips with highly cross-linked PE are introduced. Methods:. We used three methods to test the highly cross-linked PE in vivo: With Polyware-edge-detection we measured the penetration-rate of the Durasul ball-head. With electron scan microscopy we measured the wear rate in 5 retrierals. Histological examination of the periprosthetic tissue in 5 retrievals were done. Results: 1. The linear penetration rate after 1 year is 0,42 mm and after 2 years 0,096 mm. 2. Surface investigation shows no wear in the 5 retrieval cases. 3. Histological examination revealed extremely low depostion of smallest polyethylene particules. Conclusions:Now we have 3 years clinical experience with highly cross-linked PE. 3D-penetration results are as expected: we see no significant difference between conventional-PE and highly cross-linked PE (bedding in and creep). Surface investigation confirm the plastic deformation and the wear resistence of highly cross-linked PE. Histological examination shows ultra low depostion of PE particles and confirm the excellent in vitro results with highly cross-linked PE. The clinical investigation will be continued


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 113 - 113
1 May 2016
Park Y Moon Y Lim S Kim S Jeong M Park S
Full Access

Introduction. Highly cross-linked polyethylene has been introduced to decrease osteolysis secondary to polyethylene wear debris generation, but there are few long-term data on revision total hip arthroplasty using highly cross-linked polyethylene liners. The purpose of this study was to report the long-term radiographic and clinical outcomes of a highly cross-linked polyethylene liner in revision total hip arthroplasty. Materials & Methods. We analyzed 63 revision total hip arthoplasties that were performed in 63 patients using a highly cross-linked polyethylene liner between April 2000 and February 2005. Of these, nine died and four were lost to follow-up before the end of the 10-year evaluation. Thus, the final study cohort consisted of 50 patients (50 hips). There were 26 males and 24 females with a mean age at time of revision total hip arthoplasty of 53 years (range, 27–75 years). Mean duration of follow-up was 11 years (range, 10–14 years). Results. Mean Harris hip score improved from 44 points preoperatively to 85 points at final follow-up. No radiographic evidence of osteolysis was found in any hip. One hip required re-revision surgery for acetabular cup loosening at 6.5 years postoperatively. One required re-revision with a constrained liner because of recurrent dislocation. Three sustained deep infections requiring additional surgical procedures. Kaplan-Meier survivorship with an end point of re-revision for any reason was 91.0% and for aseptic cup loosening was 97.9% at 11 years (Figs. 1 and 2). Conclusions. At a minimum of 10 years, the highly cross-linked polyethylene liners showed excellent clinical performance and implant survivorship, and were not associated with osteolysis in our group of patients with revision total hip arthoplasties


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 201 - 201
1 Jul 2014
Rowell S Reyes C Malchau H Muratoglu O
Full Access

Summary. Four highly cross-linked UHWMPEs except vitamin E-stabilised explants. Introduction. The development of both first and second generation highly cross-linked material focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation; however, secondary in vivo oxidation mechanisms have been identified in both conventional and highly cross-linked UHMWPE, induced by absorbed lipids and cyclic mechanical load. Retrieval studies are reporting in vivo oxidation highly cross-linked retrievals with up to ten year in vivo durations. Preclinical aging tests did not predict these in vivo material changes. With only a decade of these materials in clinical use, retrieval studies are limited to mid-term follow-up. In vitro studies face a challenge in effectively replicating the precise in vivo conditions that lead to this loss of oxidation resistance. In this study, we bypass replicating these in vivo variables by examining surgically-retrieved components, thereby testing material that has been affectively “pre-conditioned” by their in vivo service. After a preliminary post-operative analysis, we subjected retrievals to accelerated aging tests in order to predict the extent to which their oxidative stability had been uniquely compromised in vivo. Patients & Methods. Twenty-four highly cross-linked retrievals of four manufacturing methods (n=6 each of Longevity™, Prolong™, X3™ and E1™) and in vivo durations (1–4 years) were analyzed post-operatively and after accelerated aging (70°C, 5atm O. 2. for 2 weeks; ASTM F2003). Never-implanted components (n=1) of each material type were also aged. Infrared microscopy was used to evaluate lipid absorption, oxidation (per ASTM F2102-01ε1) and hydroperoxide levels after 16 hrs of nitric oxide staining for oxidation potential, and gravimetric swelling analysis assessed cross-link density (ASTM F2214). Results. All retrievals contained absorbed lipids penetrating below both loaded (penetration depth=1.3 ± 0.5 mm) and unloaded (0.6 ± 0.2 mm) surfaces. Each material type subset contained retrievals with and without detectable oxidation after in vivo service (Max OI=0.01–0.94). After aging, all post-irradiation thermally-treated, highly cross-linked retrievals, regardless of initial lipid levels or oxidation, showed oxidative degradation, demonstrated by subsurface oxidative peaks (MOI=0.30–2.63), increased hydroperoxides (3–5X), and decreased cross-link density (−34–90%). In contrast, vitamin E-stabilised retrievals showed below MOI<0.2 with no significant loss of cross-link density. Never-implanted controls for each material type showed no oxidative changes after accelerated aging. Discussion/Conclusion. Accelerating aging after in vivo service has shown oxidative instability characterised by high oxidation and material property loss in the three highly cross-linked materials without an incorporated antioxidant. This oxidative degradation took place regardless of post-operative oxidation levels, indicating that even without detectable oxidation the material had undergone changes during in vivo service, as compared to the lack of oxidative response in never-implanted controls. These findings also suggest that the presence of an antioxidant may be able to slow down and/or stabilise in vivo mechanisms compromising long-term oxidative stability and increase the longevity of highly cross-linked UHMWPE materials


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 82 - 82
1 Jan 2016
Ramakrishnan R Tsurumoto M Malkani AL
Full Access

Introduction. Technological advances in the processing of polyethylene have led to improved survivorship of total hip arthroplasty. The purpose of this study was to determine if a second generation highly cross-linked polyethylene could improve upon wear rates compared to conventional and first generation cross-linked polyethylene in patients undergoing primary total hip arthroplasty. Methods. Linear and volumetric wear rates of a second generation highly cross-linked polyethylene were evaluated following primary total hip arthroplasty. There were 44 patients with an average age of 68.6 years and mean follow-up of 5.3 years. Patients were evaluated at six weeks, one, two and five years. Wear rates were determined from digitized AP Pelvis radiograph by an independent observer using Martell's software. Acetabular inclination and femoral head size were also evaluated to determine variability in wear rates. Results. The mean linear wear rate for the entire group was 0.015mm/year (±0.055). There was a 64% decrease in linear wear rate when compared to a first generation highly cross-linked polyethylene from the same institution. There was a 90% decrease in wear rate compared to conventional polyethylene. There were no differences in the linear wear rate between the 32mm vs. larger head sizes (36mm and 40mm). However, there was a 30% increase in volumetric wear rate with larger head sizes. The mean wear rate in patients with cup inclination less than 45 degrees was 0.006mm/year compared with 0.024mm/year for those with an inclination greater than 45 degrees. The amount of linear wear was increased by 4 times in patients with a cup inclination of greater than 45 degrees. There was no evidence of any osteolysis in this group of patients. Conclusion. Our data with a mean follow-up of 5.3 years, using a second generation highly cross-linked polyethylene, demonstrates a dramatic decrease in incidents of linear wear compared to conventional polyethylene and first generation highly cross-linked polyethylene (Figure 1). Of concern is the higher volumetric wear rate noted with larger head sizes and increased linear wear rates with cup inclination angles of greater than 45 degrees. Despite improvements in wear rates using a second generation highly cross-linked polyethylene, cup orientation and choice of head size play significant roles in implant survivorship


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 38 - 43
1 Mar 2024
Buckner BC Urban ND Cahoy KM Lyden ER Deans CF Garvin KL

Aims. Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. Methods. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up. Results. Average HHS improved from 50.8 to 91.9 and 51.0 to 89.8 in the OxZi group and control group, respectively (p = 0.644), with no osteolysis in either group. Linear and volumetric wear rates in the OxZi group averaged 0.03 mm/year and 3.46 mm. 3. /year, respectively. There was no statistically significant difference in HHS scores, nor in linear or volumetric wear rate between the groups, and no revision for any indication. Conclusion. The radiological and clinical outcomes, and survivorship of THA with OxZi femoral heads and HXLPE liners, were excellent, and comparable to CoCr or ceramic heads at minimum ten-year follow-up. Wear rates are below what would be expected for development of osteolysis. OxZi-HXLPE is a durable bearing couple with excellent long-term outcomes. Cite this article: Bone Joint J 2024;106-B(3 Supple A):38–43


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 78 - 83
1 Jul 2021
Roedel GG Kildow BJ Sveom DS Garvin KL

Aims. Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant. Methods. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm. HXLPE was the acetabular bearing for all hips. Radiographs were evaluated for polyethylene wear, radiolucent lines, and osteolysis. Results. Clinical outcomes showed significant improvement of mean Harris Hip Scores from 52.8 (SD 13.5) preoperatively to 94.8 (SD 7.6) postoperatively. One hip was revised for recurrent instability, and there were no infections. No hips were revised for mechanical loosening or osteolysis. Mean polyethylene linear wear was 0.04 mm/year and volumetric wear was 6.22 mm. 3. /year, with no significant differences between head size or material. Osteolysis was not present in any of the hips. Conclusion. The use of HXLPE in THA for patients aged 50 years and younger has performed exceptionally well without evidence of significant wear causing mechanical loosening or necessitating revision. The radiolucent lines of the acetabular component must be followed to determine the prognostic significance. This investigation represents the longest clinical follow-up of a large, consecutive cohort of patients aged 50 years or younger with THA using HXLPE. This long-term analysis found negligible polyethylene wear, no incidence of aseptic loosening, and excellent clinical outcomes at and beyond 15 years of follow-up. Cite this article: Bone Joint J 2021;103-B(7 Supple B):78–83


Bone & Joint Open
Vol. 5, Issue 10 | Pages 825 - 831
3 Oct 2024
Afghanyar Y Afghanyar B Loweg L Drees P Gercek E Dargel J Rehbein P Kutzner KP

Aims. Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. Methods. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up. Results. Clinical assessment showed persistent major improvement in all scores. On radiological assessment, only one case showed a lucent line (without symptoms). At last follow-up, wear and migration were below the critical thresholds. No cup-related revisions were needed, indicating an outstanding survival rate of 100%. Conclusion. Isoelastic VEPE cups offer high success rates and may prevent osteolysis, aseptic loosening, and the need for revision surgeries in the long term. However, longer follow-up is needed to validate our findings and confirm the advantages offered by this cup. Cite this article: Bone Jt Open 2024;5(10):825–831


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 198 - 198
1 Jul 2014
Lerf R Badertscher R Adlhart C Delfosse D
Full Access

Summary Statement. In the most recent type of highly cross-linked UHMWPE, stabilised by vitamin E, the majority of this anti-oxidant cannot be leached out. Even more, the vitamin E molecules are grafted to the UHMWPE polymer backbone by an ether bond. Introduction. Today, highly cross-linked, vitamin E stabilised UHMWPE is clinically accepted as bearing material in joint replacements. Little is known about the chemistry of this antioxidant in the polymer after irradiation. The present investigation presents a model for the chemical nature of the trapping of vitamin E in PE. Method. UHMWPE type GUR 1020 (Ticona GmbH, Kelsterbach/Germany) was blended with 0.1 % vitamin E (Merck KGaA, Darmstadt/Germany), compression moulded at Mathys Ltd Bettlach in-house and cross-linked with γ-irradiation dose of nominally 100 kGy. To assess the extent of vitamin E leachable out, three 0.3 mm sections were cut from the centre of the samples. By extraction in heptane for 48 h at 98 °C, this amount of vitamin E trapped in the polymer was determined by Fourier transform infrared spectroscopy (FTIR) as relative vitamin E index (RVEI). The nature of the extracted substances was analysed by GC-MS. For solids, many of modern spectroscopic methods are not applicable. Therefore, 0.1 % vitamin E were dissolved in two model hydrocarbons (cyclohexane and n-octane) and irradiated at the same 100 kGy γ-dose. In order to determine the chemical bond vitamin E – hydrocarbon after irradiation, these liquid solution samples were analysed by different spectroscopic methods, such as GC-MS, MALDI-TOF-SIMS, HPLC and NMR. Results. Extraction experiments showed that only 23 % of the vitamin E could be extracted by heptane after irradiation whereas from a non-irradiated control sample, all vitamin E was extracted. GC-MS confirmed that the extracted vitamin E was chemically unchanged. Analysing the model hydrocarbons after irradiation, the GC-MS-chromatogram of the cyclohexane solution showed a single peak of the formal cyclohexene adduct of vitamin E. Illustrates this adduct, cyclohexyl-6-O-α-tocopherolether. Contrariwise, the same analysis of the n-octane solution revealed three formal octane adducts. By preparing references substances these three peaks could be attributed to ethers of vitamin E bonded at three different, but chemically equivalent CH. 2. positions on the eight carbon atom chain of n-octane. The single mass peak of the cyclohexane solution arises from the six chemically equivalent carbon atoms in this cyclic hydrocarbon. The 100 kGy γ-dose transformed 76 % of the vitamin E in the n-octane solution to the corresponding ethers and 68 % of the vitamin E in the cyclohexane to cyclohexyl ether. Therefore we postulate that in highly cross-linked, vitamin E stabilised UHMWPE the vitamin E is grafted to the polymer carbon backbone by an ether bond at the phenolic OH group of the vitamin E molecule. Conclusion. Upon irradiation, vitamin E is grafted to the UHMWPE polymer backbone to a large amount. This portion of antioxidant cannot leach out. Therefore, vitamin E stabilised HXLPE is protected from oxidation and ageing by a chemically grafted, quasi internal antioxidant


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 351 - 351
1 Sep 2005
Greenwald A Postak P
Full Access

Introduction and Aims: Modular acetabular designs are widely used in THA procedures and now accommodate highly cross-linked polyethylene liners. However, polymer processing influences material properties, including a decrease in resistance to crack propagation. This study comparatively evaluated locking mechanism integrity of three modular acetabular designs, which employ conventional and highly cross-linked polyethylene liners. Method: Locking mechanism integrity was established for both conventional and highly cross-linked polymers through push-out (n=3) and lever-out (n=3) testing of fully seated liners. When possible, liners were reinserted and forcibly disassembled. Results: The push out and lever out strengths measured for the highly cross-linked polyethylene acetabular liners in this study indicated that short-term disassociation of these components is no more likely than that for the conventional polyethylene liners of each design. Student t-tests confirmed the null hypothesis. In addition, when compared to the strengths of clinically successful modular designs none of the systems evaluated presents any great risk of short-term disassociation. Significant reductions in locking mechanism strength after liner reinsertion were also noted for both polymers. Conclusion: Short-term static disassociation failure of highly cross-linked polyethylene liners were found to be equivalent to conventional polyethylene liners. Given their touted improvement in wear reduction, they would appear to be a reasonable alternative in the young patient requiring THA. Secondarily, neither conventional nor highly cross-linked polymers should be re-inserted for any reason at the time of surgery


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1604 - 1610
1 Oct 2021
Takaoka Y Goto K Tamura J Okuzu Y Kawai T Kuroda Y Orita K Matsuda S

Aims. We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive. Methods. We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of HXLPE cemented acetabular components with femoral stems made of titanium alloy. Kaplan-Meier survival analysis was performed for the primary endpoint of acetabular component revision surgery for any reason and secondary endpoint of the appearance of RLLs. RLLs that had appeared once were observed over time. We statistically assessed potential relationships between RLLs and a number of factors, including the technique of femoral head autografting and the Japanese Orthopaedic Association score. Results. The mean follow-up period was 13.0 years (10.0 to 16.3). Femoral head autografting was performed on 135 hips (72.2%). One acetabular component was retrieved because of deep infection. No revision was performed for the aseptic acetabular loosening. The Kaplan-Meier survival curve for the primary and secondary endpoints were 98.2% (95% confidence interval (CI) 88.6% to 99.8%) and 79.3% (95% CI 72.8% to 84.6%), respectively. RLLs were detected in 38 hips (21.2%), at a mean of 1.7 years (1 month to 6 years) postoperatively. None of the RLLs were progressive, and the presence of RLLs did not show a significant association with the survival and clinical score. RLLs were more frequently observed in hips without femoral head autografts than in those with autografts. Conclusion. The use of HXLPE cemented acetabular components in total hip arthroplasty demonstrated excellent clinical outcomes after ten years, and no RLLs were progressive, and their presence did not affect the outcome. Femoral head autografting did not negatively impact the acetabular component survival or the appearance of RLLs. Cite this article: Bone Joint J 2021;103-B(10):1604–1610


Aims. The aim of this study was to compare the migration of the femoral component, five years postoperatively, between patients with a highly cross-linked polyethylene (HXLPE) insert and those with a conventional polyethylene (PE) insert in an uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary aims included clinical outcomes and patient-reported outcome measures (PROMs). We have previously reported the migration and outcome of the tibial components in these patients. Methods. A double-blinded randomized controlled trial was conducted including 96 TKAs. The migration of the femoral component was measured with radiostereometry (RSA) at three and six months and one, two, and five years postoperatively. PROMs were collected preoperatively and at all periods of follow-up. Results. There was no clinically relevant difference in terms of migration of the femoral component or PROMs between the HXLPE and PE groups. The mean difference in migration (maximum total point motion), five years postopeatively, was 0.04 mm (95% CI -0.06 to 0.16) in favour of the PE group. Conclusion. There was no clinically relevant difference in migration of the femoral component, for up to five years between the two groups. These findings will help to establish a benchmark for future studies on migration of femoral components in TKA. Cite this article: Bone Joint J 2024;106-B(8):826–833


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims. The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). Methods. We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up. Results. The mean follow-up period was 19.1 years (SD 0.6; 17.3 to 20.1). The 19-year overall survival rate with the end point of all-cause revision was 97.0% (95% confidence interval (CI) 91 to 100). The mean JOA score improved from 43.2 (SD 10.6; 30 to 76) before surgery to 90.2 (SD 6.4; 76 to 98) at the final follow-up (p < 0.001). There was no osteolysis or loosening of the acetabular or femoral components. The overall steady-state wear rate was 0.013 mm/year (SD 0.012). There was no hip with a steady-state wear rate of > 0.1 mm/year. There was no significant difference in wear rates for each period. We found no significant correlation between the wear rate and age, body weight, BMI, or cup inclination. Conclusion. First-generation annealed HXLPE shows excellent wear resistance and no acceleration of wear for approximately 20 years, with low all-cause revision rates. Cite this article: Bone Joint J 2022;104-B(2):200–205


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 45 - 46
1 Mar 2006
D’Antonio J Capello W Ramakrishnan R Naughton M
Full Access

Introduction: Wear simulator studies have predicted that highly cross-linked polyethylenes can reduce linear wear by 50–90% when compared to traditional polyethylene (gamma sterilized in air). Clinical experience with a highly cross-linked polyethylene which was irradiated to 10 megarads and cold anneled but not remelted (Crossfire) began in October 1998. Methods: 72 Crossfire implants (69 patients) were implanted and have a minimum 3 year follow-up (mean 3.85 years). 31 of these implants (29 patients) have a minimum 4 year follow-up (mean 4.64 years). Linear wear utilizing a validated computerized technique was measured and compared to 38 hips (37 patients) implanted with a non-cross-linked polyethylene (gamma irradiated – N2 vac) with a mean follow-up of 4.96 years. Results: The mean wear in millimeters per year for the highly cross-linked Crossfire polyethylene with minimum 3 year follow-up was 0.054 (sd=0.032). At minimum 4 year follow-up wear was 0.057 mm/yr (sd=0.036). The wear for the N2 vac non-cross-linked polyethylene was 0.138 mm/yr (sd=0.066). Using a standard t-test the difference in wear was highly significant at p=< 0.001. Discussion & Conclusion: Cross-linking is the only material characteristic shown to improve wear performance of polyethylene. Our clinical experience demonstrates a 50% reduction in wear over N2 vac irradiated polyethylene during the first three years with no significant change out to a mean of 4.64 years. Cross-linked polyethylenes hold great hopes for significant reduction in wear and osteolysis and prolonged life of hip arthroplasty in patients of all ages


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1306 - 1311
1 Sep 2010
Patten EW Atwood SA Van Citters DW Jewett BA Pruitt LA Ries MD

Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1527 - 1534
3 Nov 2020
Orita K Minoda Y Sugama R Ohta Y Ueyama H Takemura S Nakamura H

Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results. The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 10. 7. counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 10. 7. counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion. This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 351 - 351
1 Sep 2005
McCalden R MacDonald S Rorabeck C Bourne R Chess D Saleh A
Full Access

Introduction and Aims: While highly cross-linked polyethylene has achieved widespread clinical use based on laboratory testing showing significant wear reduction, there is little clinical information demonstrating its benefits in vivo. This study reports the early clinical and wear performance of a prospective randomised controlled trial comparing highly cross-linked to standard polyethylene. Method: One hundred patients were enrolled in a prospective randomised controlled trial in which all patients received a hybrid THR (cemented Versys stem, Triology cementless acetabulum). The two groups were virtually identical in terms of age, weight, male/female ratio and received identical hip implants, except that one half (50 patients) randomly received a highly cross-linked polyethylene liner. Clinical outcomes were determined using Harris hip, WOMAC and SF-12 scores. Two-dimensional (2D) and three-dimensional (3D) wear rates were determined using a validated radiographic technique based on AP and lateral radiographs at six weeks and one, two and three years post-operatively. Results: At two years minimum follow-up (range two to four years), there were no differences in Harris hip, WOMAC or SF-12 scores. No patients were lost to follow-up, although five patients had died of unrelated causes. There were no infections, dislocations or revisions to date. Wear analysis at one-year post-op showed high penetration rates for both groups (mean 3D wear approximately 0.25 mm/year) consistent with the bedding-in phenomena. At most recent radiographic follow-up (two or three years), there was a statistically significant although modest difference in wear rates between the two groups with a 2D and 3D wear rate of 0.14±0.10 mm/yr and 0.15±0.02 mm/yr respectively for conventional polyethylene compared to 0.09±0.04 mm/yr and 0.11±0.02 mm/yr for cross-linked polyethylene. This represented a 32 and 29 percent reduction in 2D and 3D wear rates respectively with cross-linked polyethylene. Conclusion: At early follow-up, there were no clinical differences. There was a modest wear reduction (approximately 30%) with highly cross-linked polyethylene, considerably less than expected based on laboratory testing. Longer follow-up, after the bedding-in process is completed, is required to demonstrate the wear reduction afforded by highly cross-linked polyethylene