Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 117 - 117
1 Dec 2016
Cobb J
Full Access

Patients presenting with arthrosis following high tibial osteotomy (HTO) pose a technical challenge to the surgeon. Slight overcorrection during osteotomy sometimes results in persisting medial unicompartmental arthrosis, but with a valgus knee. A medial UKA is desirable, but will result in further valgus deformity, while a TKA in someone with deformity but intact cruciates may be a disappointment as it is technically challenging. The problem is similar to that of patients with a femoral malunion and arthrosis. The surgeon has to choose where to make the correction. An ‘all inside’ approach is perhaps the simplest. However, this often means extensive release of ligaments to enable ‘balancing’ of the joint, with significant compromise of the soft tissues and reduced range of motion as a consequence. As patients having HTO in the first place are relatively high demand, we have explored a more conservative option, based upon our experience with patient matched guides. We have been performing combined deformity correction and conservative arthroplasty for 5 years, using PSI developed in the MSk Lab. We have now adapted this approach to the failed HTO. By reversing the osteotomy, closing the opening wedge, or opening the closing wedge, we can restore the obliquity of the joint, and preserve the cruciate ligaments. Technique: CT based plans are used, combined with static imaging and on occasion gait data. Planning software is then used to undertake the arthroplasty, and corrective osteotomy. In the planning software, both tibial and femoral sides of the UKA are performed with minimal bone resection. The tibial osteotomy is then reversed to restore joint line obliquity. The placing of osteotomy, and the angling and positioning in relation to the tibial component are crucial. This is more important in the opening of a closing wedge, where the bone but is close to the keel cut. The tibial component is then readjusted to the final ‘Cartier’ angle. Patient guides are then made. These include a tibial cutting guide which locates both the osteotomy and the arthroplasty. At operation, the bone cuts for the arthroplasty are made first, so that these cuts are not performed on stressed bone. The cuts are not in the classical alignment as they are based upon deformed bone so the use of patient specific guides is a real help. The corrective osteotomy is then performed. If a closing wedge is being opened, then a further fibular osteotomy is needed, while the closing of an opening wedge is an easier undertaking. Six cases of corrective osteotomy and partial knee replacement are presented. In all cases, the cruciates have been preserved, together with normal patello-femoral joints. Patient satisfaction is high, because the deformity has been addressed, restoring body image. Gait characteristics are those of UKA, as the ACL has been preserved and joint line obliquity restored


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 7 - 7
1 Jan 2016
Madadi F
Full Access

A group of Athletes with torn ACL (insufficient knees) suffer from bowleg or valgus knees. AT this points we don't have a general consensus in literature. This study is based on a randomized clinical trial with double blind randomization of young athletes not more than 36 years and not over than 82 kg weight. Each groups contained by 30 patient with ACL deficient knees and bowlegs with Mikolicz line on the most medical 1/3rd of medial condyle of femur on worse. with follow up of 2 to 6 years and in all three groups we tried to control the knee by KT 2000, Tegner's score and IKDC and lysholm's scores in all patient. At final exam we had chance to meet 29 patients with simultaneous HTO (open wedge + plate) and ACL – R and 26 patients with HTO 1st, and 6 months later for ACL – R and only 24 patients with ACL – R 1st, 6 patients of this group and a patient of HTO 1st didn't show for rest of their procedures. Conclusion: by P value (o.o1) Simultaneous ACL – R and HTO had higher rate of success and between two other groups except osteoarthritis out come in short period of time (2 – 6 years) HTO had better results than ACL –R 1st with P value of (0.05)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 45 - 45
1 Apr 2022
Chaudhary M Sagade B Ankleshwaria T Lakhani P Chaudhary S Chaudhary J
Full Access

Introduction

We assessed the role of four different High Tibial osteotomies (HTOs) for medial compartment osteoarthritis of knee (MCOA): Medial Opening Wedge High Tibial Osteotomy (MOWHTO), Focal Dome Osteotomy with Ilizarov Fixator (FDO-I), intra-articular, Tibial Condylar Valgus Osteotomy with plating (TCVO-P) and intra-articular plus extra-articular osteotomy with Ilizarov(TCVO-I); in correcting three deformity categories: primary coronal plane varus measured by Mechanical Axis deviation (MAD), secondary intra-articular deformities measured by Condylar Plateau Angle (CPA) and Joint Line Convergence Angle (JLCA), and tertiary sagittal, rotational and axial plane deformities in choosing them.

Materials and Methods

We retrospectively studied HTOs in 141 knees (126 patients). There were 58, 40, 26, and 17 knees respectively in MOWHTO, FDO-I, TCVO-P and TCVO-I. We measured preoperative (bo) And postoperative (po) deformity parameters.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 97 - 97
1 Sep 2012
Dervin G Thurston PR
Full Access

Purpose. Patients with anterior cruciate ligament (ACL) deficiency and symptomatic medial compartment osteoarthritis (OA) present a challenge in management. These are often younger than typical primary OA patients and aspire to remain athletically active beyond simple ADLs. Combined ACL reconstruction and valgus tibial osteotomy (ACLHTO) is a well documented surgical option for patients deemed wither too young or too active for total knee arthroplasty. Unicompartmental knee arthroplasty (UKA) is an established surgical treatment for symptomatic medial osteoarthritis of the knee refractory to conservative management. A commonly cited contraindications is symptomatic ACL deficiency because of previous reports detailing premature failure through loosening of the tibial component. Improved results and endoscopic ACL reconstructive procedures have led to an enticing concept of combining ACL reconstruction with medial unicompartmental knee arthroplasty (ACLUKR) for those ACL-deficient medial osteoarthritic (OA) knees. We sought to compare the outcomes in 2 cohorts of patients who underwent either ACLHTO or ACLUKR for this clinical problem. Method. Patients presenting with symptomatic bone on bone medial compartment OA and concomitant ACL deficiency (clinical or asymptomatic) were evaluated for surgery after exhausting non operative management. Patients who were under 40 or had plans to return to high impact loading sports and/or who had more moderate OA were offered combined ACL – medial opening wedge tibia osteotomy as a surgical procedure of choice. Patients were considered for combined ACL Oxford replacement if they were primarily seeking pain relief and were not engaged or aspiring to return to high impact or pivoting sports. All cases but one were concurrent ACL with either HTO or UKR with autogenous hamstring grafts used in all but 2 cases. Results. Thirty of 34 consecutive cases were available for follow-up for a rate of 88%. The median ages for 14 cases of ACLUKR was 51 (range 43 60) whereas 16 patients with ACLHTO had median age 43.4 (range 32 −59). Median FU was 4.65 yrs with minimum 2 year follow up (range 2–8.3). Three of the cases were revision ACL cases all from previous Gore-Tex reconstructions. All but the first patient had concomitant ACL and Oxford unicompartmental knee replacement at 1 surgical sitting and are the subject of this report. The first patient had an autogenous patella bone tendon bone graft performed 6 months prior to the UKA. There were similar change scores for patients in both groups. For ACLUKR, WOMAC pain improvements from 48.1 10.2 SD preoperatively to 79.0 17 SD postop. For ACLHTO, WOMAC improvements from 55.1 13.2 SD preoperatively to 85.0 17 SD postop. To date there have been no cases of infection or bearing dislocation in the ACLUKR group. One patient in the ACLHTO group was revised to TKR for ongoing pain and postoperative flexion contracture. Patient activities ranged from ambulation to vigorous hiking, tennis, and downhill skiing in the UKR group whereas a few in the ACLHTO group were also running mid distances. Overall satisfaction was similar in both groups. Conclusion. ACL reconstruction can safely be combined with medial UKR. The procedure has been used in younger patients with a view toward bone preservation while anticipating need for future revision. Both cohorts showed similar improvements and can be considered. The choice should be geared toward patient athletic demand. While short term results are encouraging though longer term data are necessary to thoroughly evaluate the role of this procedure in patients with medial compartment osteoarthritis and ACL deficiency


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 76 - 76
1 Jan 2016
Trabish M
Full Access

Hypothesis

The use of cartilage compensated virtual standing CT images for pre surgical planning improves the reliability of preoperative planning.

Materials and Method

Sampling included in this study were > 62 years of age (mean age 58.17 yrs ±3.54 yrs, range 55–62) with symptomatic isolated medial osteoarthritis, genu varum (mean varus 5.6°±2.6 °, range 2.1°–8.6°), good range of motion (flexion > 90° and flexion contracture < 10°) and with minimal ligamentous instability. All subjects had obtained a pre-op CT scan, MRI scan and weight-bearing long bone x ray. Post-op CT and long standing x-rays were taken prior to hospital discharge.

A virtual software suite (HTO-OP3D, Zapalign Inc, Seoul, Korea) was utilised to determine an optimal osteotomy site, hinge location and a gap necessary to achieve the targeted virtual passing point.

Prerequisite to performing the necessary calculations a virtual standing pose for each patient specific bone models was created using the following steps.

To transfer the pre surgical plan intra-operatively, a customised alignment jig was manufactured


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 116 - 116
10 Feb 2023
Sundaraj K Russsell V Salmon L Pinczewski L
Full Access

The aim of this study was to determine the long term 20 year survival and outcomes of high tibial osteotomy (HTO). 100 consecutive subjects underwent HTO under the care of a single surgeon between 2000 and 2002, consented to participation in a prospective study and completed preoperative WOMAC scores. Subjects were reviewed at 10 years, and again at a minimum of 20 years after surgery. PROMS included further surgery, WOMAC scores, Oxford Knee Score (OHS), KOOS, and EQ-5D, and satisfaction with surgery. 20 year survival was assessed with Kaplan-Meir analysis, and failure defined as proceeding to subsequent knee arthroplasty. The mean age at HTO was 50 years (range 26-66), and 72% were males. The 5, 10, and 20 year survival of the HTO was 88%, 76%, 43% respectively. On multiple regression analysis HTO failure was associated with poor preoperative WOMAC score of 45 or less (HR 3.2, 95% CI 1.7-6.0, p=0.001), age at surgery of 55 or more (HR 2.3, 95% CI 1.3-4.0, p=0.004), and obesity (HR 1.9, 95% CI 1.1-3.4, p=0.023). In patients who met all criteria of preoperative WOMAC score of 45 or less, age <55 years and body mass index of <30 HTO survival was 100%, 94%, and 59% at 5, 10 and 20 years respectively. Of those who had not proceeded to TKA the mean Oxford Score was 40, KOOS Pain score was 91 and KOOS function score was 97. 97% reported they were satisfied with the surgery and 88% would have the same surgery again under the same circumstances. At 20 years after HTO 43% had not proceeded to knee arthroplasty, and were continuing to demonstrate high subjective scores and satisfaction with surgery. HTO survival was higher in those under 55 years, with BMI <30 and baseline WOMAC score of >45 at 59% HTO survival over 20 years. HTO may be considered a viable procedure to delay premature knee arthroplasty in carefully selected subjects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 1 - 1
3 Mar 2023
Kinghorn AF Whatling G Bowd J Wilson C Holt C
Full Access

This study aimed to examine the effect of high tibial osteotomy (HTO) on the ankle and subtalar joints via analysis of static radiographic alignment. We hypothesised that surgical alteration of the alignment of the proximal tibia would result in compensatory distal changes. 35 patients recruited as part of the wider Biomechanics and Bioengineering Centre Versus Arthritis HTO study between 2011 and 2018 had pre- and postoperative full-length weightbearing radiographs taken of their lower limbs. In addition to standard alignment measures of the limb and knee (mechanical tibiofemoral angle, Mikulicz point, medial proximal tibial angle), additional measures were taken of the ankle/subtalar joints (lateral distal tibial angle, ground-talus angle, joint line convergence angle of the ankle) as well as a novel measure of stance width. Results were compared using a paired T-test and Pearson's correlation coefficient. Following HTO, there was a significant (5.4°) change in subtalar alignment. Ground-talus angle appeared related both to the level of malalignment preoperatively and the magnitude of the alignment change caused by the HTO surgery; suggesting subtalar positioning as a key adaptive mechanism. In addition to compensatory changes within the subtalar joints, the patients on average had a 31% wider stance following HTO. These two mechanisms do not appear to be correlated but the morphology of the tibial plafond may influence which compensatory mechanisms are employed by different subgroups of HTO patients. These findings are of vital importance in clinical practice both to anticipate potential changes to the ankle and subtalar joints following HTO but it could also open up wider indications for HTO in the treatment of ankle malalignment and osteoarthritis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 15 - 15
1 Feb 2020
Song S Kang S Park C
Full Access

Purpose. Long-term clinical and radiographic results and survival rates were compared between closed-wedge high tibial osteotomy (HTOs) and fixed-bearing unicompartmental knee arthroplasty (UKA) in patients with similar demographics. Methods. Sixty HTOs and 50 UKAs completed between 1992 and 1998 were retrospectively reviewed. There were no significant differences in preoperative demographics. The mean follow-up period was 10.7 ±5.7 years for HTO and 12.0 ±7.1 years for UKA (n.s.). The Knee Society knee and function scores, WOMAC, and range of motion (ROM) were investigated. The mechanical axis and femorotibial angle were evaluated. Kaplan–Meier survival analysis was performed (failure: revision to TKA), and the failure modes were investigated. Results. Most of the clinical and radiographic results were not different at the last follow-up, except ROM; ROM was 135.3 ±12.3° in HTO and 126.8 ±13.3° in UKA (p=0.005). The 5-, 10-, 15-, and 20-year survival rates were 100%, 91.0%, 63.4%, and 48.3% for closed-wedge HTO, respectively, and 90.5%, 87.1%, 70.8%, and 66.4% for UKA (n.s.). The survival rate was higher than that for UKA until 12 years postoperatively but was higher in UKAs thereafter, following a remarkable decrease in HTO. The most common failure mode was degenerative osteoarthritic progression of medial compartment in HTO and femoral component loosening in UKA. Conclusions. Long-term survival did not differ significantly between closed-wedge HTO and fixed-bearing UKA in patients with similar preoperative demographics and knee conditions. The difference in postoperative ROM and failure mode should be considered when selecting a procedure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 12 - 12
1 May 2018
Hart S Wood A Murray J
Full Access

High tibial osteotomy (HTO) is largely conducted as an inpatient procedure, imposing the significant cost of hospital admission. Here we examine patient-related outcomes and cost benefit of altering HTO to a day-case procedure. A retrospective questionnaire was conducted with patients that underwent HTO in the one and half years prior to the change to day-case, and those in the one and half years afterwards. We considered pre-operative and post-operative KOOS scores, patient pain-scoring and whether they would, given their experience, undergo HTO as an outpatient again. Thirty-three patients were included in the trial: twenty-three inpatient admissions and ten day-cases. Average KOOS score improvement for inpatients was 24.68 and outpatients was 31.8. Outcomes such as post-operative pain and nausea/vomiting were found to be similar between groups. The outpatient group unanimously agreed that if undergoing HTO again they would desire to be treated in the outpatient setting again. Currently HTO is conducted as an inpatient procedure in the majority of institutions. We have demonstrated that patients have comparable outcomes and agree that if undergoing HTO again they would wish to do so as day-case outpatient. This represents a significant cost saving for institutions conducting HTO as well as an improvement in service


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 111 - 111
1 Apr 2017
Valle CD
Full Access

As with any revision knee arthroplasty, the first rule of revision is to ensure that the reason for failure has been identified, as revision for pain alone is associated with poor results. This is particularly important when considering revision of a UKA, as surgeons may have a lower threshold for revision than following TKA given the perception that the revision is “easy” and that the pain is “probably from the unresurfaced compartments”. In a multi-center study, we found that many patients undergoing revision of a failed UKA do not have an appropriate evaluation for infection. Evaluation should include a screening ESR and CRP and if abnormal, an aspiration of the knee joint for synovial fluid WBC count, differential and culture. To revise a UKA to a TKA, we perform the revision as we would a primary TKA, ignoring the implanted femoral component and using it to assist with reference of femoral component rotation and for the distal femoral cut; the component is not removed until it must for the final preparation. After finishing the femoral component cuts, the tibia is completely exposed prior to carefully removing the tibial component and re-cutting the tibia. In our experience of 45 consecutive both component revisions of UKA to TKA at Rush, 44 used primary implants (98%), including cruciate retaining implants in 36 of these 44 knees (82%; the balance were PS implants) and tibial stems were utilised in 6 of 44 knees (14%). In order to better understand the outcomes of revision of failed UKA we studied 49 patients revised from UKA to TKA and 43 revised from HTO to TKA and matched them to 43 aseptic, both component revision TKA and 97 primary TKA. At a mean of 4.8 years, the KSS and Function Scores in the UKA to TKA, HTO to TKA and primary TKA cohorts were similar. Total operative times were significantly higher in the HTO to TKA and revision TKA groups. Length of hospital stay was shorter in the primary TKA cohort. The rate of complications and reoperations were higher in the HTO to TKA and revision TKA groups compared to the UKA to TKA and primary TKA groups. Based on these results, we believe that revising an HTO and UKA to a TKA both had functional outcomes more similar to a primary than a revision TKA, however, the complication rate of revising an HTO was more similar to a revision than a primary TKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 39 - 39
1 Oct 2014
Song EK Seon JK Seol JH Kim HS Kim G
Full Access

The radiologic and clinical results of High Tibial Osteotomies (HTO) strongly rely on the accuracy of correction, and inadequate intraoperative measurements of the leg axis can lead to over or under- correction. Over the past few years, navigation systems have been proven that navigation systems provide reliable real-time intro-operative information, may increase accuracy, and improves the precision of orthopaedic surgeries. We assessed the radiological and clinical results of navigation- assisted open wedge HTO versus conventional HTO at 24 months after surgery. A total of sixty-five open wedge HTOs were performed using navigation system and compared with forty-six open HTOs that had been performed using the conventional cable technique in terms of intraoperative leg axis assess. The Orthopilot navigation system (HTO version 1.3, B. Braun Aesculap, Tuttligen, Germany) used throughout the procedure of navigated open wedge HTO. The aim of the correction was to achieve of 3°of valgus (2–4°) on both method. For the radiological evaluation, postoperative leg axes were examined using weight bearing full-leg radiography obtained at postoperative two years after surgery. To assess correction accuracies, we compared mechanical tibiofemoral angles and intersections of the mechanical axis of the tibial plateau (%) in both groups. Outliers were defined as under-corrections of < 2° of valgus and as over-corrections of > 5° of valgus. The posterior slope of the proximal tibia was measured using the proximal tibial anatomical axis (PTAA) method. HSS (Hospital for Special Surgery) scores and ROMs (ranges of motion) were evaluated and all complications were recorded and surgical and radiation times were measured. Navigated HTOs corrected mechanical axes to 2.8° valgus (range −3.1∼5.3) with few outliers (9.5%), and maintained posterior slopes (8.5±2.3° preoperatively and 11.0±2.8° postoperatively) (P>0.05). In the conventional group, the mean valgus correction was satisfactory (2.2° valgus), but only 67.4% were within the required range (2∼5° valgus), and 26.1% of cases were under-corrected and 6.5% of cases were over-corrected. Posterior slope increased from 8.0° to 10.6° on average without significant change after surgery. Total fluoroscopic radiation time during navigated HTO was 8.1 seconds (5∼12s) as compared with 46.2 seconds (28∼64 s) during conventional HTO (p<0.05). The surgery time for navigated HTO was 11.2 minutes longer than for conventional HTO (55.5 minutes). No specific complications related to the navigation were encountered. At clinical follow up, mean HSS scores of the navigated HTO and conventional groups improved to 91.8 and 92.5 from preoperative values of 55.3 and 55.9, respectively (p>0.05), and all patients achieved full ROM. Navigation for HTO significantly improved the accuracy of postoperative leg axis, and decreased the variability of correction with fewer outliers, and without any complications. Moreover, it allows multi-plane measurements to be made, in the sagittal and transverse planes as well as the frontal plane intra-operatively in real time, compensates to some extent for preoperative planning shortcomings based on radiography, and significantly reduces radiation time


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 133 - 133
1 Apr 2019
Higa M Nakayama H Yoshiya S
Full Access

Introduction. Although total knee replacement became a widespread procedure for the purpose of knee reconstruction, osteotomies around the knee were regularly performed. Total knee arthroplasty should be performed for advanced arthritis of the knee. With the advent of biplanar open wedge high tibial osteotomy (HTO) combined with locking plate fixation, HTO has been expanded and its surgical outcome has been improved in recent years. However, post-operative joint-line obliquity has been raised as a concern with this procedure, which may affect the outcome especially in the knees with severe varus deformity. Hence the purpose of this study is to analyze the compression and shear stresses in the knee cartilage with joint line obliquity after HTO. Methods. Using a three-dimensional computer aided design software, the digital knee model with soft tissues was developed. The geometrical bone data used in this study were derived from commercially available human bone digital anatomy media (3972 and 3976, Pacific Research Laboratories, Inc., WA, USA). The three-dimensional knee model was transferred to finite element model. Material properties of the soft tissues and bones were derived from previous studies. The loading condition was adjusted to the load during a single-leg stance of the gait cycle, which resulted in an axial compressive load of 1200 N. Two different conditions were subjected to the analysis: normal alignment and joint-line obliquity after HTO. For the normal alignment, a static force of 1200 N was applied along the mechanical axis. For the joint-line obliquity models, a single force of 1200 N was applied rotating force directions in the frontal plane from the normal direction by 2.5º, 5º, 7.5º, and 10º, respectively. Results. The maximum values of the axial stresses in the cartilages for the normal condition showed almost same values in medial and lateral compartments. In the joint-line obliquity models, the maximum axial stress values in the medial compartment did not exhibit substantial change up to the level of 7.5º obliquity, while a rise in maximum stress value was observed for the model with 10º obliquity. The shear stress showed a different tendency. In the joint-line obliquity models, a steep rise of laterally directed shear stress in the medial compartment was observed for models with obliquity of 5º or more. Discussion. The shear stress in the medial cartilage increased to almost twice as high as the normal knee level for the joint- line obliquity model with an inclination of 5º. The maximum shear stress values increased in accordance with the obliquity angle. The elevated stress could be deleterious to the cartilage. In such large amount of correction by tibial osteotomy leads to unfavorable mechanical environment in the knee. For those severe situations, double-level osteotomy, which retains anatomical knee joint line by simultaneous femoral and tibial osteotomies, should be considered to correct the joint-line obliquity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 3 - 3
1 Aug 2013
Hobbs H Magnussen R Demey G Lustig S Neyret P Servien E
Full Access

Introduction:. High tibial osteotomy (HTO) is a common treatment for medial compartment arthritis of the knee in younger, more active patients. The HTO shifts load away from the degenerative medial compartment and into the lateral compartment. This change can be accomplished with either a lateral closing or a medial opening wedge HTO. An HTO also potentially affects leg length. Mathematical models predict that the osteotomy type (opening versus closing) and the magnitude of the correction determine the change in leg length, but no in vivo studies have been published. The purpose of this study is to quantify and compare leg length change following opening and closing wedge HTO. Study Design:. Retrospective cohort study – Level III evidence. Methods:. Thirty-two medial opening and 32 lateral closing HTO's were selected from patients treated at our institution between 2006 and 2009. Pre-operative and one-year post-operative full-length lower extremity radiographs were obtained along with operative reports. Pre- and post-operative coronal plane alignment and leg length were measured and surgical details were collected. Results:. The 64 osteotomies were performed in 62 patients (43 male, 19 female) at an average age of 57 years. The mean opening wedge was 9.3 mm (range: 5 to 17 mm) and the mean closing wedge was 8.0 mm (range: 6 to 10 mm). Knee alignment changed from a mean of 174 degrees pre-operatively to a mean of 183 degrees post-operatively in both groups. In the medial opening wedge group, total leg length was found to increase from 836.3 ± 63.5 mm pre-operatively to 841.8 ± 64.1 post-operatively, a change of 5.5 ± 4.4 mm (p < 0.0001). A significant correlation was found between the amount of correction and the increase in overall leg length (r. 2. = 0.21, p = 0.009). In the lateral closing wedge group, total leg length was found to decrease from 840.6 ± 51.5 mm pre-operatively to 837.9 ± 52.0 post-operatively, a decrease of 2.7 ± 4.0 mm (p = 0.0008). No correlation was found between the amount of correction and the change in overall leg length. The difference in mean leg length change between opening and closing wedge osteotomies was 8.2 ± 5.9 mm (p < 0.0001). Conclusions:. Medial opening wedge HTO can result in significant leg lengthening depending on the degree of opening. Leg length changes associated with lateral closing wedge HTO are generally smaller. Both techniques results in less leg length change than mathematical models predict. Pre-operative leg length discrepancy should be considered when choosing an osteotomy technique


Purpose. The purpose was to compare the accuracy of the method using 3D printing model with the method using picture archiving and communication system (PACS) images in high tibial osteotomy (HTO). Materials and methods. This study analyzed 40 patients with varus deformity and medial osteoarthritis. From 2012 to 2016, patients underwent HTO using either 3D printing model (20 knees) or method based on a PACS image (20 knees). After obtaining the correction angle for the target point (62.5% point of the mediolateral tibial plateau width), in the 3D printing method, the wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The PACS method used preoperative radiographs to shift the weight bearing axis. The accuracy of the HTO and the proportion of acceptable range (62.5 ± 5%) at each method was compared using the full-length lower limb radiographs at the sixth postoperative week. The pre and postoperative posterior tibial slope angle was also compared at each method. Results. The weight bearing line on the tibial plateau was corrected from a preoperative 21.1 ± 11.8% to a postoperative 61.6 ± 3.4% in the 3D group and from 19.5 ± 12.3% to 61.4 ± 8.0% in the PACS group. The patients in an acceptable range were more in 3D printing group (80%) than in PACS group (60%) (p=0.028). The mean of absolute difference with the target point was less in 3D printing groups (2.4 ± 2.5) than PACS group (6.2 ± 5.1) (p=0.006). The posterior tibial slope was not significantly different in 3D printing group (8.6° to 8.9°, p=0.073), whereas different in PACS group (9.9° to 10.5°, p=0.042). Conclusions. In HTO, correction based on the 3D printing method was more accurate than correction using the PACS method


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 11 - 11
1 May 2012
L. P C. H L. S A. K H. W N. H W. VDT R. C
Full Access

Introduction. The management of degenerative arthritis of the knee in the younger, active patient presents a challenge to the orthopaedic surgeon. Surgical treatment options include: high tibial osteotomy (HTO), unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA). The aim of this study was to examine the long-term survival of closing wedge HTO in a large series of patients up to 19 years after surgery. Methods. Four hundred and fifty-five consecutive patients underwent lateral closing wedge HTO for medial compartment osteoarthritis (MCOA) between 1990 and 2001. Between 2008-2009, patients were contacted via telephone. Assessment included: incidence of further surgery, current body mass index (BMI), Oxford Knee Score, and British Orthopaedic Association (BOA) Patient Satisfaction Scale. Failure was defined as the need for revision HTO or conversion to UKA or TKA. Survival analysis was completed using the Kaplan-Meier method. Results. High tibial osteotomy survival was determined on 413 patients (91%) and, of the 397 patients who were alive at the time of final review, 394 (99%) were contacted for follow-up via telephone interview. The probability of survival for HTO at 5, 10 and 15 years was: 95%, 79% and 56% respectively. Multivariate regression analysis showed that age < 50 years (p=0.001), BMI < 25 kg/m. 2. (p=0.006) and ACL deficiency (p=0.03) were associated with better odds of survival. Mean Oxford Knee Score was 40/48 (range 17-48). Overall, 85% of patients were enthusiastic or satisfied and 84% would undergo HTO again at mean 12 years follow-up. Conclusion. High tibial osteotomy can be effective for periods longer than 15 years. However, results do deteriorate over time. Age < 50 years, normal BMI and ACL deficiency were independent factors associated with improved long-term survival of HTO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 134 - 134
1 Jan 2016
Kuwashima U Tashiro Y Okazaki K Mizu-uchi H Hamai S Okamoto S Iwamoto Y
Full Access

«Purpose». High tibial osteotomy (HTO) is a useful treatment option for osteoarthritis of the knee. Closing-wedge HTO (CW-HTO) had been mostly performed previously, but the difficulties of surgical procedure when total knee arthroplasty (TKA) conversion is needed are sometimes pointed out because of the severe deformity in proximal tibia. Recently, opening-wedge HTO (OW-HTO) is becoming more popular, but the difference of the two surgical techniques about the influence on proximal tibia deformity and difficulties in TKA conversion are not fully understood. The purpose of this study was to compare the influence of two surgical techniques with CW-HTO and OW-HTO on the tibial bone deformity using computer simulation and to assess the difficulties when TKA conversion should be required in the future. «Methods». In forty knees with medial osteoarthritis, the 3D bone models were created from the series of 1 mm slices two-dimensional contours using the 3D reconstruction algorithm. The 3-D imaging software (Mimics, materialize NV, Leuven, Belgium) was applied and simulated surgical procedure of each CW-HTO and OW-HTO were performed on the same knee models. In CWHTO, insertion level was set 2cm below the medial joint line [Fig.1]. While in OW-HTO, that was set 3.5cm below the medial joint line and passed obliquely towards the tip of the fibular head [Fig.2]. The correction angle was determined so that the postoperative tibiofemoral angle would be 170 degrees. The distance between the center of resection surface and anatomical axis, and the angle of anatomical axis and mechanical axis were measured in each procedure. Secondly, a simulated TKA conversion was operated on the each tibial bone models after HTO [Fig.3]. The distance between the nearest points of tibial implant and lateral cortical bone was assessed as the index of the bone-implant interference. «Results». The distance between the center of resection surface and anatomical axis was significantly shifted to the lateral side in CW group (0.62 ±2.95 mm lateral shift) than in OW group (0.93 ± 3.68 mm medial shift) (P<0.01). The angle of anatomical axis and mechanical axis was significantly increased in the CW group (CW: 0.77 ± 0.79 degree, OW: 0.49 ± 0.83 degree, P<0.01). In the simulation of TKA conversion, if thickness of the lateral cortical bone was 3mm, it was showed that the tibial implant was more interfered with the lateral cortical bone in CW group (2.77 ± 1.38 mm) than in OW group (4.32 ± 1.61 mm) (P<0.01). «Conclusions». The results suggested that bone deformity in proximal tibia after HTO might affect the difficulty of TKA conversion, particularly in the case of CWHTO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 28 - 28
1 Feb 2016
Iravani M Farahmand F Medhipour S Hovittalab M
Full Access

High tibial osteotomy (HTO) is a common surgical procedure for treatment of patients with varus mal-alignment. The success rate of the procedure is strongly dependent on the quality of the correction. Thus, an accurate pre-planning is essential to ensure that the precise amount of alignment is achieved postoperatively. The purpose of this study was to simulate the HTO in a patient with varus deformity in order to explore the interactions between the wedge angle, the mechanical axis, and the knee joint configuration. A finite element model of the knee joint of a patient with varus deformity was developed. The geometry was obtained using the whole limb CT scans the knee MR images. The bones were assumed as rigid bodies, the articular cartilage and the meniscus as elastic solids, and the ligaments as nonlinear springs. A 600N force was applied at the femoral head in the line of the mechanical axis and the resulting knee configuration was studied. The HTO was simulated assuming insertion of wedges with different angles beneath the tibial plate and applying the resulting alteration of the loading axis to the model. The results indicated that the actual change of the mechanical axes was always smaller than what predicted by a geometric pre-planning approach that does not consider the post-operative change of the knee joint configuration. It was suggested that subject-specific models are needed to simulate the HTO in patients before surgery and determine the appropriate wedge angle that locates the mechanical axis in the middle of the knee


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 10 - 10
1 May 2018
Monk P Boyd R Brown C Gibbons M Alvand A Price A
Full Access

The optimal correction of the weight bearing line during High Tibial Osteotomy has not been determined. We used finite element modelling to simulate the effect that increasing opening wedge HTO has on the distribution of stress and pressure through the knee joint during normal gait. Subject-specific models were developed by combining geometry from 7T MRI scans and applied joint loads from ground reaction forces measured during level walking. Baseline stresses and pressures on the articulating proximal tibial cartilage and menisci were calculated. Progressive osteotomies were then simulated to shift the weight-bearing line from the native alignment towards/into the lateral compartment (between 40 – 80% of medial-lateral tibial width). Changes in calculated stresses and pressures were recorded. Both stress and pressure decreased in the medial compartment and increased in the lateral compartment as increasingly valgus osteotomies were simulated. The models demonstrated a consistent “safe zone” for weight bearing line position at 50%-65% medial-lateral tibial width, outside of which compartment stresses and pressures substantial increased. This study suggests a safe correction zone within which a medial opening wedge HTO can be performed correcting the WBL to 55% medio-lateral width of the tibia


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 27 - 27
1 Feb 2016
Amini M Ngo T McCormack R Amiri S
Full Access

C-Arm fluoroscopy is limited by its 2D imaging modality and is incapable of providing accurate 3D quantitative assessment of operative anatomy. In High Tibial Osteotomy (HTO), assessing the distance between the mechanical axis of the leg and the centre of the knee joint is difficult to accomplish due to limited fluoroscopic view size. A previously developed sensor-based tracking system (TC-Arm)adds on to C-arm equipment to provide additional quantitative capabilities. A new image-based tracking module was developed for TC-Arm using a reference panel with an array of fiducial markers. The image analysis software segments the marker positions in each image and identifies image coordinates with respect to the panel. Each image's parameters are identified by 2D-3D matching of the panel's 3D model to the marker's epipolar geometries. Finally, the defined linear transformation matrices are applied for positioning all the fluoroscopic images with respect to the same global reference. A Sawbone model of the leg was used as a phantom and marked with radio-dense fiducial markers at the centres of each joint. An Optotrak optoelectronic tracking system data was used to validate the new module's functions. First, tracking accuracy was determined by comparing orthogonal-stereo views and the reconstructed positions of the panel's design. Secondly, TC-Arm's results were compared to the corresponding digitised references points on the Sawbone model to calculate errors in the varus/valgus angle and mechanical axis deviation. The new addition to the TC-Arm has a reasonable tracking accuracy (<3.6mm, <4°) considering HTO: The system measured the mechanical axis deviation for HTO application with an accuracy of 1.3 mm and 1.4°. Comparing these results with the acceptable tolerance of less than 10 mm for MAD reported in the literature, our demonstrated results are considered to be within an acceptable range. With the new module, the capability for three-dimensional quantitative assessments of operative anatomies of any size can be added to any C-arm equipment in the OR. This can have great potential for many complex orthopaedic trauma, reconstruction, or preservation surgeries including HTO


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 91 - 91
1 May 2012
Lind M Webster K Feller J McClelland J Wittwer J
Full Access

High tibial osteotomy (HTO) is an established treatment for medial compartment osteoarthritis of the knee; the aim being to achieve a somewhat valgus coronal alignment, thereby unloading the affected medial compartment. This study investigated knee kinematics and kinetics before and after HTO and compared them with matched control data. A three dimensional motion analysis system and two force platforms were used to collect kinematic and kinetic data from eight patients with medial compartment knee osteoarthritis during walking preoperatively and 12 months following HTO (opening wedge). Nine control participants of similar age and the same sex were tested using the same protocol. Sagittal and coronal knee angles and moments were measured on both the operated and non-operated knees and compared between the two time points and between HTO participants and controls. In addition, preoperative and postoperative radiographic coronal plane alignments were compared in the HTO participants. The point at which the mechanical axis passed through the knee joint was corrected from a preoperative mean of 10% tibial width from the medial tibial margin to 56% postoperatively. Stride length and walking speed both improved to essentially normal levels (1.57 m and 1.5 m/s) ostoperatively. In the coronal plane the mean peak adduction angle during stance reduced from 14.3° to 5.2° (control: 6.8°). Mean maximum adduction moments were similarly reduced to levels less than in control participants, in keeping with the aim of the surgical procedure: peak adduction moment 1: pre 3.8, post 2.7, control 3.6 peak adduction moment 2: pre 2.5, post 1.7 and control 2.6. In the sagittal plane, both mean maximum flexion and extension during stance increased postoperatively—extension to greater than in control participants and flexion to almost control levels. The maximum external knee flexor moment during stance also increased to near normal postoperatively. High tibial osteotomy appears to achieve the intended biomechanical effects in the coronal plane (reduced loading of the medial compartment during stance). At the same time there were improvements in sagittal plane kinematics and kinetics which may reflect a reduction in pain. The net effect was to reduce quadriceps demand