Heterotopic ossification (HO) is defined as aberrant bone formation in extraskeletal locations. In this process, local stromal cells of mesenchymal origin abnormally differentiate, resulting in pathologic cartilage and bone matrix deposition. However, the specific cell type and mechanisms beyond this process are not well understood, in part due to the heterogeneity of progenitor cells involved. Here, a combination of single cell RNA sequencing (scRNA-Seq) and lineage tracing, defined the extent to which synovial / tendon sheath progenitor cells contribute to
Introduction and Objective. Heterotopic ossification is the formation of extraskeletal mineralized tissue commonly associated with either trauma or surgery. While several mouse models have been developed to better characterize the pathologic progression of
Heterotopic ossification (HO) is lamellar bone formation that occurs within tissues that do not normally have properties of ossification. The pathoaetiology of
Aim. The aim of the study was to define the peculiarities of bone remodeling and identify specific parameters to development to heterotopic ossification. Materials and methods. Markers of bone formation (Osteocalcin, serum type 1 procollagen (N-terminal) (tP1NP)) and bone resorption (serum collagen type 1 cross-linked C-telopeptide (β-CTx)) were determined by the electrochemiluminiscence immunoassay “ECLIA” for Elecsys user cobas immunoassay analyser. In the study were included 23 patients with spinal cord injury – first group (average age 26.8 ± 3.9, duration of spinal cord injury from 3 to 12 months) and 23 healthy people's appropriate age and gender (average age 30.6 ± 6.0, years). In the first group included 11 patients with spinal cord injury with the presence of heterotopic ossification – subgroup I and 12 patients with spinal cord injury without heterotopic ossification – subgroup II. Results. The results of examination showed that patients of first group had significantly higher bone markers than control group: P1NP (256.7±48.2 ng/ml vs 49.3±5.1 ng/ml, p<0.001), serum β-CTx (1.47±0.23 ng/ml vs 0.45±0.04 ng/ml, p<0.0001), osteocalcin (52.2±9.8 ng/ml vs 24.9±2.08 ng/ml, p<0.001). There were obtained that levels of bone remodeling markers in patients with
Abstract. Objectives. The term heterotopic ossification (HO) describes lamellar bone formation within soft tissues following injury. A genome-wide scan of patients after hip arthroplasty has identified that variation within the lncRNA CASC20 is associated with
Introduction and Objective. Interest for direct anterior approach (DAA) in hip hemiarthroplasty (HHA) has greatly increased in recent years, however which is the best surgical approach in hip replacement treating femoral neck fractures (FNFs) is already unclear. The aim of this study is to perform a radiographic and perioperative complications analysis by comparing the direct anterior approach (DAA) with the direct lateral approach (DLA) in patients treated with hemiarthroplasty for FNFs. Materials and Methods. Patients with FNFs surgically treated between 2016–2020 with HHA were enrolled. The radiographical outcomes of DAA and DLA are compared. Several peri-operative and post-operative variables were evaluated: mean surgery time, complications as periprosthetic fractures or episodes of dislocation, the average of post-operative diaphyseal filling of the stem (Canal Fill Index, CFI), the extent of heterotopic ossification (HO) (simplified Broker classification) and metadiaphiseal bone loss (Paprosky classification) within one year from surgery. Results. 86 patients underwent HHA by DAA and 80 patients by DLA. The two groups are qualitatively comparable. No statistically significate differences were showed in all variables analyzed (p>0.05). The average of surgical time of DAA were 61 minutes compared to 67 of DLA. No differences were showed in the post-operative CFI (DAA 0.71 ± 6.1; DLA 0.76 ± 13.5), the extent of the
Restoration of anatomy is paramount in total hip arthroplasty (THA) to optimise function and stability. Leg-length discrepancy of ≥10mm is poorly tolerated and can be the subject of litigation. We routinely use a multimodal protocol to optimise soft tissue balancing which involves pre-operative templating, leg-length measurement supine and in the lateral position after positioning, and the use of an intra-operative leg-length measurement device to ensure optimisation of leg-length. We have analysed the results of our protocol in restoring leg-length in primary THA. Radiological leg-length was measured in a consecutive series of 50 patients who had THA for unilateral arthritis by an independent observer pre- and post-operatively using validated methods utilising radiological software. The measurements pre- and post-operative were compared. Patients with bilateral hip arthritis and poor imaging were excluded. Leg-length was successfully restored to within 5.0mm of the target leg-length in 84.0% of patients (mean +0.7mm (95% CI +0.2 to +1.1)). The other 14.0% of patients were restored to within 5.1–8.0mm (mean +2.2mm (95% CI −2.7 to +7.1)) and 2.0% of patients were restored to within 8.1–10.0mm. Leg length was accurately restored across the subset of patients within a narrow range of either side of the mean target leg length. Intra-operative measurement of leg length can be difficult but is vital in ensuring appropriate restoration of leg-length. We recommend a similar multimodal protocol to ensure restoration of leg-length within narrow limits to maximise function and patient satisfaction.
Summary. Indomethacin has differential effects on chondrogencic outcome depending on differentiation stage. Introduction. Heterotopic ossification (HO) is the abnormal formation of bone in soft tissues and is a frequent complication of hip replacement surgery. The standard treatment to prevent
Lower limb fractures are amongst the most common surgically managed orthopaedic injuries, with open reduction and internal fixation (ORIF) as the conventional method of treatment of the fibula. In recent years, dedicated intramedullary implants have emerged for fibula fixation in tandem with the move towards minimally invasive surgery in high-risk patients. This is the largest multicentre review to date with the aim of establishing the clinical outcomes following intramedullary nail (IMN) fixation of the fibula and to identify the absolute indication for fibula IMN fixation. A retrospective study of adult patients in all UK hospitals, who underwent fibula nail fixation between 01/01/2018 and 31/10/2020 was performed. Primary outcome measures included time to union, infection rate, other post-operative complications associated with the fixation and length of hospital stay. The secondary outcome measure was to identify the indication for fibula nailing. Data tabulation was performed using Microsoft Excel and analysis was performed using SPSS Version 23 (SPSS Statistics).Introduction and Objective
Materials and Methods
In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. Tissue engineering may be an alternative for cranial bone repair. Titanium (Ti) and its alloys are widely used in many clinical devices because of perfect biocompatibility, highly corrosion resistance and ideal physical properties. An important progress in treating bone defects has been the introduction of bone morphogenetic proteins (BMPs), specifically BMP-2. The proteins induce osteogenic cell differentiation in vitro, as well as bone defect healing in vivo. In this study, we fabricated the titanium plate with dioxide creating by microarc oxidation (MAO) and then electronic deposition of Ca.P that can carrier recombinant human bone morphogenetic protein-2 (rhBMP-2) to enhance osteogenesis in vitro and bone formation in vivo. The rhBMP-2 was controlled released from MAO-Ca.P-rhBMP2 implant was maintain within 35days longer than Ti without MAO modification group and without CaP electronic deposition group. In addition, the in vitro results revealed that the bioactivity of rhBMP-2 released from MAO-Ca.P-rhBMP2 implant with an ideal therapeutic dose was well maintained. In vivo, the critical-sized defect (20-mm diameter) of New Zealand White rabbits was used to experiment. We concluded that sustained controlled-release of rhBMP-2 above a therapeutic dose could induce osseointegration between the implant and surrounding bone the rate of bone formation into the implant and produce neovascularization. Our study combined the concept of osteoconductive and osteoinductive to do the bone tissue regeneration.
Fracture healing is an issue that has not yet been fully elucidated. It is generally accepted in the literature that head trauma accelerates fracture healing and causes higher volume callus tissue. Recent studies have examined the relationship between head trauma and fracture healing more molecularly. Based on this research; the aim of this study is to show the effect of head trauma on fracture healing radiologically and histologically and to investigate the relationship between serum β-Catenin level and fracture healing with the experiment we performed on rats. A total of 36 Wistar Albino female rats with a mean age of 24 weeks were included in the study with the permission of Mersin University Animal Experiments Local Ethics Committee. Six rats in the first group were not traumatized and their blood samples were collected on the day of the experiment started, end of the third week and end of the sixth week. In the second group, only head trauma was performed and blood samples were collected at the end of the third and sixth weeks. In the third group, only open femoral fracture model was applied, blood samples were collected at the third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. In the fourth group, both head trauma and open femur fracture model were applied, blood samples were collected at the end of third and sixth weeks and AP and Lateral radiographs of the fractured femurs were taken. After sacrification, femurs were dissected from the surrounding soft tissues and subjected to histological examination. The expression level of β-Catenin was measured by PCR from all blood samples. Direct radiographs of the third and fourth groups at 3 and 6 weeks were evaluated by two orthopedists according to Rust and Lane & Sandhu scoring system. The histomorphometric examination was performed by evaluating the Huo scoring and the ratio of fracture callus components (cartilage callus, bone callus, fibrous callus) to areas. According to PCR analysis, the change of expression of β-Catenin by weeks was not statistically significant in the first and second groups. However, a statistically significant decrease was observed in the 0–6 week interval in the third and fourth groups (p = 0.002, p <0.0001, respectively). In the radiological examination, the union scores of the rats with head trauma + femoral fracture were higher than the isolated femoral fractures at 3 weeks and 6 weeks. In histomorphometric examination, no statistically significant difference was found between head trauma + femur fracture group and isolated femur fracture group. In addition, there was no correlation between the groups in the correlation studies between radiological findings, histomorphmetric findings and PCR findings. Considering that each molecule involved in fracture healing processes has a time interval and concentration; We concluded that the expression levels of β-catenin can be repeated in smaller time periods including the early stages of fracture healing.
To date there has been no material for endoprosthetics providing excellent resistance to abrasion and corrosion combined with great tensile strength, fracture toughness, and bending strength, as well as adequate biocompatibility. Carbon-fiber-reinforced silicon carbide (C/SiC, C/C-SiC or C/SiSiC) is as a ceramic compound a potentially novel biomaterial offering higher ductility and durability than comparable oxide ceramics. Aim of this investigation was to test the suitability of C/SiC ceramics as a new material for bearing couples in endoprosthetics. One essential quality that any new material must possess is biocompatibility. For this project the in-vitro biocompatibility was investigated by using cuboid like scaffolds made of CMC. To determine whether the material is suited as a lubricant partner in endoprosthetics, we measured its abrasion coefficient and wear tolerance against various antibodies. The C/SiC samples tested were produced via the Liquid Silicon Infiltration (LSI) of pyrolized porous fiber preforms made by warm-flow pressing free-flowing granulates on a hydraulic downstroking press with a heated die of the type HPS-S, 1000 kN. After preparation of the composites, the tribological characteristics are determined. Flexural strength was determined at room temperature according to DIN685-3 with an universal testing machine Z100 and the Young”s -modulus was carried out via resonant frequency-damping analysis RFDA. The samples”surface as well as cell adhesion and cell morphology were assessed via ESEM. The human osteoblast-like cell line MG-63 and human ostoeblast were used for cel culture ecperiments (WST, Live/dead, Cytotoxicity, cell morphology). Based on the raw data the mean value and the standard deviation were calculated. The Mann-Whitney-U-Test was used to evaluate the differences between experiment and control samples. The flexural strength at room temperature is approx. 180 MPa, while the elongation at break is about 0.13%. The Young”s modulus is detected between 120 and 150 GPa. The density lies between 2.5 and 3.0 g/cm3. We noted a friction coefficient µ between 0.31. The cell lines exhibited no morphological alterations, and adhered well to the C/SiC samples. Vitality was not impaired by contact with the ceramic composite. Cell growth was observed evenly distributed over a 21-day period. In the future, investigators aiming to apply this composite in endoprosthetics will have to focus on its efficacy in conjunction with sudden, strong demands, and long-term performance in bodily fluids within joint simulators, etc. In conclusion: C/SiC can definitely be considered a new material with genuine potential for use in endoprosthetics.
Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin composites, or control defects treated with chondrocyte-fibrin composites alone, were compared before death by the clinical appearance and repeated analysis of synovial fluid, and at termination eight months after surgery by tissue morphology, collagen typing, and biochemical assays. The structure of cartilage was evaluated histologically by Toluidine Blue reaction and collagen type-I and type-II in situ hybridisation and immunohistochemistry. Repair tissue was biochemically evaluated by DNA assay, proteoglycan quantitation and characterisation, assessment of collagen by reverse-phase high-performance liquid chromatography, and collagen typing using cyanogen bromide digestion and peptide separation by polyacrylamide gel electrophoresis. The results at eight months showed that the addition of IGF-I to chondrocyte grafts enhanced chondrogenesis in cartilage defects, including incorporation into surrounding cartilage. Gross filling of defects was improved, and the tissue contained a higher proportion of cells producing type-II collagen. Measurements of collagen type II showed improved levels in IGF-I-treated defects, supporting in situ hybridisation and immunohistochemical assessments of the defects. IGF-I improves the repair capabilities of chondrocyte-fibrin grafts in large full-thickness repair models.
Fusion is a fundamental procedure in spine surgery. Although autogenous grafts have ideal bone graft characteristics, their use may remain limited due to various morbidities. Even though ceramic based synthetic bone grafts are used commonly at present, in order to enhance their efficacy, their combined use with other materials has been investigated. The use of carbon nanotubes (CNTs) together with synthetic bone grafts such as hydroxyapatite (HA) has contributed to positive developments in bone tissue engineering. The aim of the present study was to investigate the effect of CNTs/ HA- tricalcium phosphate (TCP) composite prepared in posterolateral spinal fusion model.Background context
Purpose
One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines. The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p >
0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion. The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation.
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects. The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.
We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction. After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm3 over the local saline group (analysis of variance, p <
0.05) without any adverse effect on the left control tibiae. The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis.