Venous Thromboembolism (VTE) prophylaxis is an essential part of orthopaedic surgeries in preventing life-threatening thromboembolic events such as Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE). Orthopaedic surgery has the highest incidence rate of thromboembolic events as compared to any other surgical specialities, making it an essential component in managing any orthopaedic case. At Queen's Medical Centre (QMC), a major trauma centre in the United Kingdom (UK), sees up to 750 NOF fracture cases annually, making it one of the busiest trauma and orthopaedic centres in the UK. Our study aims to evaluate how VTE Prophylaxis is conducted in a UK Major Trauma Centre for NOF and pelvic fragility fractures and how human factors can improve its efficacy. The Nottingham University Hospitals (NUH) Trust has implemented new guidelines from August 2019 that patients with fragility fractures such as NOF and pelvic fractures are prescribed with 28 days VTE prophylaxis with Enoxaparin, or their own anti-coagulants if risk of thrombosis exceed the risk of bleeding. This is an adaptation from the trust to align their guidelines closer to the NICE 2018 guidelines. We will be evaluating the initial compliance of VTE Prophylaxis, identify and utilise human factors, then re-analyse the department after implementing interventions on the same batch of junior doctors working in the department. Data of 100 patients with fragility fractures were collected, 50 consecutive patients in the pre-intervention window during August 2019 and 50 in the post-intervention window during November 2019. The pre-intervention data had 43 NOF and 7 Pelvic fractures. Our study showed that 93% of NOF fracture and 100% of pelvic fracture received the correct course of VTE prophylaxis. The data was presented at the local department junior doctor academic session. Three simple human factor interventions were implemented over the course of September and October: Education to the trauma and orthopaedic department on the new guideline, extended VTE labels on drug charts for patients with fragility fractures, VTE reminder labels at doctors' stations. Another 50 consecutive patients' data were collected during November 2019. Data shows that 97.8% of NOF (p>0.05) and 60% of pelvic fracture (p>0.05) received the correct course of VTE prophylaxis Our data has shown an increase in correct VTE prescription for NOF fracture patients, which is the main bulk of our fragility fracture patients whilst we see a drop in pelvic fracture patients. Due to the limited time frame of four months where junior doctors in the UK rotate between specialities, we are only able to collect data during the first month, implement interventions between datasets and collect data on the final month of the four-month rotation. A future bigger study might provide a more significant result on the department. We believe that the key to achieving 100% VTE prophylaxis in the T&O department is optimising human factors, educating junior doctors, who are not orthopaedic trained, with sufficient information of the guidelines, and evidence of the risk and benefits of providing prolonged VTE prophylaxis for orthopaedic patients. In conclusion, we found that QMC, a major trauma centre with high patient volume and turnover, has a high level of compliance with VTE prophylaxis for fragility fractures and it is imperative that utilising human factors will inch the department closer to its goal of 100% VTE compliance.
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods