Advertisement for orthosearch.org.uk
Results 1 - 20 of 52
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 71 - 71
1 Mar 2012
Hughes AW Dwyer AJ Govindaswamy R Lankester BJA
Full Access

The outcome following arthroscopic anterior cruciate (ACL) reconstruction is dependant on a combination of surgical and non-surgical factors. Technical error is the commonest cause for graft failure, with poor tunnel placement accounting for over 80% of those errors. A routine audit of femoral and tibial tunnel positions following single bundle hamstring arthroscopic ACL reconstruction identified apparent inconsistent positioning of the tibial tunnel in the sagittal plane. Intra-operative fluoroscopy was therefore introduced (when available) to verify tibial guide wire position prior to tunnel reaming. This paper reports a comparison of tibial interference screw position measured on post-operative radiographs with known tunnel position as shown on intra-operative fluoroscopic images in 20 patients undergoing routine primary ACL reconstruction between January and June 2009. Surgery took a mean of 5 minutes longer when intra-operative fluoroscopy was used. In 3/20 patients, fluoroscopy led to re-positioning of the tibial guide wire prior to tunnel reaming. The mean tibial tunnel position as indicated by the tunnel reamer was 41 +/− 2.7 % of the total plateau depth (range 37% to 47%). The mean position projected from the tibial screw on post operative radiographs was 46 +/− 9.2% (range 38% to 76%). A paired t-test showed a significant difference (p = 0.022) between true tunnel position and tibial screw position. 6/20 patients had post operative screw positions that were > 5% more posterior than the known position of the tibial tunnel. The position of the tunnel should be measured at its mid-point where this is evident. On most early radiographic images, the margins of the tunnel are not clear and therefore a line projected from the centre of the screw is used. This audit demonstrates the potential inaccuracy associated with this


Bone & Joint Research
Vol. 1, Issue 10 | Pages 234 - 237
1 Oct 2012
Hughes AW Dwyer AJ Govindaswamy R Lankester B

Objectives. Our aim was to assess the use of intra-operative fluoroscopy in the assessment of the position of the tibial tunnel during reconstruction of the anterior cruciate ligament (ACL). Methods. Between January and June 2009 a total of 31 arthroscopic hamstring ACL reconstructions were performed. Intra-operative fluoroscopy was introduced (when available) to verify the position of the guidewire before tunnel reaming. It was only available for use in 20 cases, due to other demands on the radiology department. The tourniquet times were compared between the two groups and all cases where radiological images lead to re-positioning of the guide wire were recorded. The secondary outcome involved assessing the tibial interference screw position measured on post-operative radiographs and comparing with the known tunnel position as shown on intra-operative fluoroscopic images. Results. Of the 20 patients treated with fluoroscopy, the imaging led to repositioning of the tibial guide wire before reaming in three (15%). The mean tourniquet time with intra-operative fluoroscopy was 56 minutes (44 to 70) compared with 51 minutes (42 to 67) for the operations performed without. Six patients (30%) had post-operative screw positions that were > 5% more posterior than the known position of the tibial tunnel. Conclusion. Intra-operative fluoroscopy can be effectively used to improve the accuracy of tibial tunnel positions with minimal increase in tourniquet time. This study also demonstrates the potential inaccuracy associated with plain radiological assessment of tunnel position


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 105 - 112
1 Jan 2021
Lynch JT Perriman DM Scarvell JM Pickering MR Galvin CR Neeman T Smith PN

Aims. Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs. Methods. In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis. Results. CR-FB designs had significantly lower maximal flexion (mean 116° (SD 2.1°)) compared to CR-RP (123° (SD 1.6°)) and PS-FB (125° (SD 2.1°)). The PS-FB design displayed a more posteriorly positioned femur throughout flexion. Furthermore, the CR-RP femur was more externally rotated throughout kneeling. Finally, individual patient kinematics showed high degrees of variability within all designs. Conclusion. The increased maximal flexion found in the PS-FB and CR-RP designs were likely achieved in different ways. The PS-FB design uses a cam-post to hold the femur more posteriorly preventing posterior impingement. The external rotation within the CR-RP design was surprising and hasn’t previously been reported. It is likely due to the polyethylene bearing being decoupled from flexion. The findings of this study provide insights into the function of different knee arthroplasty designs in the context during deep kneeling and provide clinicians with a more kinematically informed choice for implant selection and may allow improved management of patients' functional expectations. Cite this article: Bone Joint J 2021;103-B(1):105–112


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 66 - 66
7 Aug 2023
Holthof S Amis A Van Arkel R Rock M
Full Access

Abstract. Introduction. Mid-flexion instability may cause poor outcomes following TKA. Surgical technique, patient-specific factors, and implant design could all contribute to it, with modelling and fluoroscopy data suggesting the latter may be the root cause. However, current implants all pass the preclinical stability testing standards, making it difficult to understand the effects of implant design on instability. We hypothesized that a more physiological test, analysing functional stability across the range of knee flexion-extension, could delineate the effects of design, independent of surgical technique and patient-specific factors. Methods. Using a SIMvitro-controlled six-degree-of-freedom robot, a dynamic stability test was developed, including continuous flexion and reporting data in a trans-epicondylar axis system. 3 femoral geometries were tested: gradually reducing radius, multi-radius and single-radius, with their respective tibial inserts. 710N of compression force (body weight) was applied to the implants as they were flexed from 0–140° with three levels of anterior/posterior (AP) tibial force applied (−90N,0N,90N). Results. While in static tests, the implants performed similarly, functional stability testing revealed different paths of motion and AP laxities throughout the flexion cycle. Some designs exhibited mid-flexion instability, while others did not: the multi-radius design allowed increased AP laxity as it transitioned to each arc of reduced femoral component radius; the single-radius design had low tibial bearing conformity, allowing 16mm difference in the paths of mid-flexion versus extension motion. Conclusions. Preclinical lab testing reveals functional differences between different design philosophies. Implant design impacts kinematics and mid-flexion stability, even before factoring in surgical technique and patient-specific factors


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 47 - 47
1 Oct 2019
Klemt C Arauz P Kwon Y
Full Access

Introduction. Inability to reproduce 6-degrees of freedom (6DOF) kinematics, abnormal “paradoxical” anterior femoral translation and loss of normal medial pivot rotation are challenges associated with contemporary posterior cruciate retaining and posterior stabilized total knee arthroplasty (TKA). The removal of the anterior and/or both cruciate ligaments in CR/PS TKA, leading to significant kinematic alteration of the knee joint, has been suggested as one of the potential contributory factors in patients remaining dissatisfied after TKA. Bi-cruciate retaining (BCR) TKA designs allow preservation of both anterior and posterior cruciate ligaments with the potential to replicate normal knee joint kinematics. Physically demanding tasks such as sit-to-stand (STS), and deep lunging may be more sensitive tools for investigating preserved kinematic abnormalities following TKA. This study aims to compare in-vivo kinematics between the operated and the contralateral non-operated knee in patients with contemporary BCR TKA design. Methods. Twenty-nine patients (14 male; 15 female, 65.7±7.7 years) unilaterally implanted with a contemporary BCR TKA design featuring an asymmetric femoral component and independently designed medial and lateral bearings were evaluated. Mean follow-up time after BCR TKA was 12.7±5.1 months. All patients received a computer tomography (CT) scan from the pelvis to the ankles for the creation of 3D surface models of both knees (BCR TKA and non-operated). Patients performed single leg deep lunges and sit-to-stand under a validated dual fluoroscopic imaging system (DFIS) surveillance. Each patient's 2D dynamic fluoroscopic images, corresponding 3D surface bone models (for contralateral non-operated knee) and computer aided design (CAD) implant models (for the BCR TKA implanted knee) were imported into a virtual DFIS environment in MATLAB. An optimization procedure was utilized to perform matching between the 3D surface bone models and the 2D fluoroscopic image outlines. In-vivo 6DOF kinematics of the BCR TKA knees and contralateral non-operated side were quantified and analyzed. Results. When performing the high-flexion lunge, BCR TKA knees demonstrated less average femoral posterior translation (13±4mm) during terminal flexion when compared to the contralateral non-operated knees (16.6±3.7mm) (p=0.001). Similarly, during STS, less femoral rollback was observed (11.6±4.5mm vs 14.4±4.6mm, p<0.04) in BCR TKA knees. Overall, BCR TKA knees partially reproduced a normal “screw-home” motion, demonstrating reduced internal rotation during several intervals of the cycles for strenuous flexion activities. BCR TKA knees demonstrated less internal rotation during high-flexion lunge (4±5.6° vs 6.5±6.1°, p=0.05). Similarly, during STS, less internal rotation was observed (4.5±6° vs 6.9±6.3°, p=0.04, p=0.02, p=0.01, p=0.02) in BCR TKA knees. Conclusion. The BCR TKA design demonstrated asymmetries in flexion-extension and internal-external rotation, suggesting that in-vivo tibiofemoral kinematic parameters are not fully restored in BCR patients during functionally strenuous activities such as single leg deep lunges and sit-to-stand. Further studies are required to elucidate the importance of patient factors, surgical component orientation and implant designs in optimizing in vivo kinematics in patients with BCR TKA. For figures, tables, or references, please contact authors directly


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims. The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. Methods. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee. Results. During single-leg deep lunge, BCR TKAs showed significantly less mean posterior femoral translation (13 mm; standard deviation (SD) 4) during terminal flexion, compared with the contralateral knee (16.6 mm, SD 3.7; p = 0.001). Similarly, BCR TKAs showed significantly less mean femoral rollback (11.6 mm (SD 4.5) vs 14.4 mm (SD 4.6); p < 0.043) during sit-to-stand. BCR TKAs showed significantly reduced internal rotation during many parts of the strenuous flexion activities particularly during high-flexion lunge (4° (SD 5.6°) vs 6.5° (SD 6.1°); p = 0.051) and during sit-to-stand (4.5° (SD 6°) vs 6.9° (SD 6.3°); p = 0.048). Conclusion. The contemporary design of BCR TKA showed asymmetrical flexion-extension and internal-external rotation, suggesting that the kinematics are not entirely reproduced during strenuous activities. Future studies are required to establish the importance of patient factors, component orientation and design, in optimizing kinematics in patients who undergo BCR TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):59–65


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2020
Li G Zhou C Rao Z Bedair H
Full Access

Introduction. Medial pivoting motion of the knee has been widely assumed in total knee arthroplasty (TKA) research, but was not consistently observed in recent studies of in vivo knee motion. This study investigated the in vivo motion characters of the knee by analyzing the axial tibial rotation and tibiofemoral articular contact motion during a weightbearing flexion and a treadmill gait. Methods. In vivo kinematics of eight living human knees during a weightbearing flexion and a treadmill gait was determined using a combined MRI and dual fluoroscopic imaging system technique. The axial tibial rotation and the tibiofemoral cartilage contact point motion on both the tibial plateau and femoral condyle surfaces were analyzed. Results. While internal tibial rotation was observed with flexion of the knee during the two activities, larger excursions of the tibiofemoral contact points were measured on the medial femoral condyle surface than on the lateral side during the weightbearing flexion of the knee. The contact point excursions were also larger on the medial tibial plateau surface than on the lateral side during the treadmill gait. The contact points moved anteriorly with flexion and posteriorly with extension of the knee on the medial tibial surface during the gait, that was opposite to the femoral rollback observed during the weightbearing knee flexion. Conclusion. The data indicates that the in-vivo knee motion is activity- and loading-dependent and cannot be described using a single motion character. The knee could potentially rotate with respect to an axis located at the lateral side of the knee and the traditional “medial pivoting” motion character of the knee was not observed in these in-vivo activities. The data could provide important implications for the improvement of TKA designs and implantation techniques that are aimed to restore normal knee function


Bone & Joint Research
Vol. 8, Issue 5 | Pages 207 - 215
1 May 2019
Key S Scott G Stammers JG Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives. The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Methods. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed. Results. Overall, 1717 joint poses were analyzed. At a 1.0 mm detection threshold, 37 instances of surface separation were observed in the lateral compartment and four medially (p < 0.001). Separation was activity-dependent, both laterally and medially (p < 0.001), occurring more commonly during static deep flexion in the lateral compartment, and during static rotation in the medial compartment. Lateral separation occurred more frequently than medial during kneeling (7/14 lateral vs 1/14 medial; p = 0.031) and stepping (20/1022 lateral vs 0/1022 medial; p < 0.001). Separation varied significantly between individuals during dynamic activities. Conclusion. No consistent association between closest distances of the articular surfaces and knee position was found during any activity. Lift-off was infrequent and depended on the activity performed and the individual knee. Lateral separation was consistent with the design rationale. Medial lift-off was rare and mostly in non-weight-bearing activities. Cite this article: S. Key, G. Scott, J. G. Stammers, M. A. R. Freeman†, V. Pinskerova, R. E. Field, J. Skinner, S. A. Banks. Does lateral lift-off occur in static and dynamic activity in a medially spherical total knee arthroplasty? A pulsed-fluoroscopic investigation. Bone Joint Res 2019;8:207–215. DOI: 10.1302/2046-3758.85.BJR-2018-0237.R1


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

Methods

The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction.


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims

We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry.

Methods

In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1265 - 1270
1 Dec 2023
Hurley ET Sherman SL Chahla J Gursoy S Alaia MJ Tanaka MJ Pace JL Jazrawi LM

Aims

The aim of this study was to establish consensus statements on medial patellofemoral ligament (MPFL) reconstruction, anteromedialization tibial tubercle osteotomy, trochleoplasty, and rehabilitation and return to sporting activity in patients with patellar instability, using the modified Delphi process.

Methods

This was the second part of a study dealing with these aspects of management in these patients. As in part I, a total of 60 surgeons from 11 countries contributed to the development of consensus statements based on their expertise in this area. They were assigned to one of seven working groups defined by subtopics of interest. Consensus was defined as achieving between 80% and 89% agreement, strong consensus was defined as between 90% and 99% agreement, and 100% agreement was considered unanimous.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 80 - 86
1 Mar 2016
Scott G Imam MA Eifert A Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives. Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo. Methods. The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m. 2. (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities. Results. During maximally flexed kneeling and lunging activities, the mean tibial internal rotation was 8° (standard deviation (. sd. ) 6). At a mean 112° flexion (. sd. 16) during lunging, the medial and lateral condyles were a mean of 2 mm (. sd. 3) and 8 mm (. sd. 4) posterior to a transverse line passing through the centre of the medial tibial concavity. With a mean flexion of 117° (. sd. 14) during kneeling, the medial and lateral condyles were a mean of 1 mm (. sd. 4) anterior and 6 mm (. sd. 4) posterior to the same line. During dynamic stair and pivoting activities, there was a mean anteroposterior translation of 0 mm to 2 mm of the medial femoral condyle. Backward lateral condylar translation occurred and was linearly related to tibial rotation. Conclusion. The GMK Sphere TKA in our study group shows movements similar in pattern, although reduced in magnitude, to those in recent reports relating to normal knees during several activities. Specifically, little or no translation of the medial femoral condyle was observed during flexion, but there was posterior roll-back of the lateral femoral condyle, equating to tibiofemoral rotation. We conclude that the GMK Sphere is anteroposteriorly stable medially and permits rotation about the medial compartment. Cite this article: Professor G. Scott. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised?: A pulsed fluoroscopic investigation. Bone Joint Res 2016;5:80–86. DOI: 10.1302/2046-3758.53.2000621


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1078 - 1085
1 Oct 2023
Cance N Batailler C Shatrov J Canetti R Servien E Lustig S

Aims

Tibial tubercle osteotomy (TTO) facilitates surgical exposure and protects the extensor mechanism during revision total knee arthroplasty (rTKA). The purpose of this study was to determine the rates of bony union, complications, and reoperations following TTO during rTKA, to assess the functional outcomes of rTKA with TTO at two years’ minimum follow-up, and to identify the risk factors of failure.

Methods

Between January 2010 and September 2020, 695 rTKAs were performed and data were entered into a prospective database. Inclusion criteria were rTKAs with concomitant TTO, without extensor mechanism allograft, and a minimum of two years’ follow-up. A total of 135 rTKAs were included, with a mean age of 65 years (SD 9.0) and a mean BMI of 29.8 kg/m2 (SD 5.7). The most frequent indications for revision were infection (50%; 68/135), aseptic loosening (25%; 34/135), and stiffness (13%; 18/135). Patients had standardized follow-up at six weeks, three months, six months, and annually thereafter. Complications and revisions were evaluated at the last follow-up. Functional outcomes were assessed using the Knee Society Score (KSS) and range of motion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 78 - 78
1 Jul 2012
Talawadekar G Rose B Elnikety S Grigoras I Jeer P
Full Access

Introduction. As intra-operative fluoroscopic identification of the isometric MPFL attachment to the femur can be imprecise and laborious in a surgical setting, we used clinical criteria to identify the isometric point and then studied post-operative radiographs to find out whether it was achieved and compared it with functional outcome. Materials and Methods. Sixteen patients underwent 17 MPFL reconstructions using autologous semi-tendinosis tendon graft. Clinical judgement was used to identify the optimal point for femoral attachment of the MPFL without fluoroscopy control. Post-operative radiographs at 2 weeks were analysed to confirm whether an isometric point for the reconstructed MPFL was achieved by dividing the distal femur into 4 quadrants by 2 lines on the lateral radiograph. Telephonic interview was conducted to assess functional scores using the Kujala score at a mean follow-up of 13 months. Results. In only 4 of the 17 cases, the femoral point of attachment lay in the radiographically isometric (antero-proximal) quadrant. In 8 of 17 knees, the point of MPFL attachment lay in the antero-distal quadrant. However, there was an improvement in the functional score in 14 of 16 patients, with none reporting recurrence of patellar instability. The position of the reconstructed MPFL did not correlate with functional score. Conclusion. Over-reliance on a clinical method alone for identification of the optimal point for MPFL attachment without an intra-operative radiograph leads to radiographically non-isometric positioning in a majority of cases. In the clinical setting, however, this does not correlate with adverse functional outcome, although intra-operative fluoroscopy may improve the anatomical isometry, and we therefore suggest the use of a qualitative clinical method to achieve optimal


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 940 - 945
1 Jul 2005
Pandit H Ward T Hollinghurst D Beard DJ Gill HS Thomas NP Murray DW

Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics in vivo. The kinematic profile was obtained by measuring the patellar tendon angle through the functional knee flexion range (0° to 90°) and the results compared with 14 normal knees. All designs of TKR had abnormal sagittal kinematics compared with the normal knee. There was a significant (p < 0.05) difference between those of the two TKRs near to full extension. The presence of the cam-post mechanism did not influence the kinematics for either TKR design. These differences suggest that surface geometry is a stronger determinant of kinematics than the presence or absence of a cam-post mechanism for these two designs. This may be because the cam-post mechanism is ineffective


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims

Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release.

Methods

A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims

Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique.

Methods

Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims

The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA).

Methods

Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers.