The aim of the study to analyze the circulating white blood cells including the intensity expression of surface receptors and cytoplasmic molecules in patients underwent total hip replacement, with either aseptic or septic loosening of hip prostheses in order to identify cell-surface and cytoplasmic markers that could be indicative of early loosening.
Aims. Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. Methods. The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability.
Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by
Aims. Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. Methods. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and
Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by
Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using
Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and
Aims. This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA). Methods. Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA),
Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D environment is necessary to reflect on the complex mix of these adherend and non-adherend cells in a physiologically relevant context. Therefore, the main aim of this approach was to establish conditions for a stable 3D BM-MNC culture to assess cellular responses on fracture healing strategies. BM samples were obtained from residual material after surgery with positive ethical vote and informed consent of the patients. BM-MNCs were isolated by density gradient centrifugation, and cellular composition was determined by
Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and
Undifferentiated pleomorphic sarcoma (UPS) is one of the most common and aggressive adult soft tissue sarcomas (STS). Once metastatic, UPS is rapidly fatal. Most STS, including UPS, are resistant to conventional immunotherapies as these tumours have low numbers of spontaneous tumour infiltrating lymphocytes (TILs) and are densely populated with immune suppressive macrophages. Intra-tumoural activation of the STimulator of INterferon Genes (STING) pathway is a novel immunotherapeutic strategy to recruit anti-tumour TILs into the tumour microenvironment. In a murine model of UPS, we have demonstrated that intra-tumoural injection of a murine-specific STING agonist, DMXAA, results in profound immune mediated tumour clearance. Recently, molecules capable of activating both human and mouse STING pathways have been developed. In pursuit of clinically relevant therapeutic opportunities, the purpose of this study is to evaluate the anti-tumour potential of two agonists of the human and murine STING receptors: ADU-S100 and MSA-2 as monotherapies and in combination with the immune checkpoint inhibitor, anti-PD1 in a murine model of UPS. Immune competent mice were engrafted with murine UPS cells in the hindlimb muscle. Once palpable, mice in the monotherapy group were treated with a single intra-tumoural dose of 1) ADU-S100 or 2) MSA-2 or 3) DMXAA. In additional experimental groups, mice were treated with the different STING agonists and monoclonal anti-PD1. Tumour volume measurements and tumour bioluminescence were measured over time. To quantify dynamic changes in immune populations and in the tumour immune microenvironment, STING treated UPS tumours were evaluated using
Aims. The aim of this study was to evaluate blood metal ion levels, leucocyte profiles, and serum cytokines in patients with a total hip arthroplasty (THA) involving modular dual-mobility components. Patients and Methods. A total of 39 patients were recruited, with clinical follow-up of up to two years. Outcome was assessed using the Harris Hip Score (HHS, the 12-Item Short-Form Health Survey (SF-12), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and a visual analogue scale (VAS) for pain. Blood concentrations of cobalt (Co), chromium (Cr), and serum cytokines were measured. Subpopulations of leucocytes were analyzed by
Aims. Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Methods. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and
Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by
Abstract. Objective. SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between mesenchymal stromal cells (MSCs) and chondrocytes by comparing SOX gene expression in their co-culture and respective monocultures. Methods. Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm. 2. The AMSCs were characterised by a panel of MSC surface markers in
SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures. Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Samples were handled according to the 2004 UK Human Tissue Act. Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm. 2. The AMSCs were characterised by a panel of MSC surface markers in
Aims. Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods. Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis.
The meniscus is at the cornerstone of knee joint function, imparting stability and ensuring shock absorption, load transmission, and stress distribution within the knee joint. However, it is very vulnerable to injury and age-related degeneration. Meniscal tears are reported as the most common pathology of the knee with a mean annual incidence of 66 per 100,000. Knee osteoarthritis progresses more rapidly in the absence of a functional meniscus. Historically, tears extending to the avascular inner portion of the meniscus (white-white zone, “WW”), such as radial tears were considered as untreatable and were often resected, due to the lack of vascularity in the WW zone. Perfusion-based anatomical studies performed on cadaveric menisci in the 1980s shaped the current dogma that human meniscus has poor regenerative capacity, partly due to limited blood supply that only reaches 10 to 25% of the meniscus, commonly referred to as red-red zone (“RR”). Previous studies, including those utilizing animal models have shown mobilization of Mesenchymal Stem Cells (MSCs) upon injury into the WW zone, and successful MSC recruitment when administered externally to the injury site. We and others have recently reported positive outcomes of repaired tears in the inner zone of patients. We hypothesized that the “avascular” white-white zone of the meniscus possesses regenerative capacity due to a resident stem/progenitor cell population. Further, we sought to redefine the presence of microvessels in all meniscal zones using advanced stereology and imaging modalities. Fifteen menisci from fresh human cadaveric knees (mean age: 21.53±6.53 years) without evidence of previous injury were obtained from two tissue banks (JRF, Centennial, CO) and Biosource Medical (Lakeland, FL) and utilized for this study. The use of cadaveric specimens for research purposes was approved by the institutional review board. Tibial plateaus were dissected to harvest medial and lateral menisci along their entire length. The RR, red-white (RW) and WW zones were dissected and separated into three thirds from the inner aspect to the marginal border of the meniscus and their wet weights recorded (Fig.1A). Meniscus tissue cellular content in each zone was obtained from dissociation of meniscus tissue using 0.02% w/v pronase (Millipore) for 1h at 37oC, followed by 18h 0.02% w/v collagenase II (Worthington) at 37oC with shaking. Isolated cells were characterized immediately after harvest using
Introduction. It has been shown in vitro that human monocytes can phagocytose submicron polyethylene wear particles generated from total hip arthroplasties (THA) with highly cross-linked polyethylene inlays. The aim of our study was to detect the presence and possible phagocytosis of such particles in peripheral blood monocytes of patients with respective THA. Patients and methods. All patients were operated using the same implant, the cementless SL Plus stem; Bicon cup and a cross-linked polyethylene insert Rexpol (Smith and Nephew). Besides clinical and radiographic check-up, blood samples were collected at follow-up and analyzed by
Objectives. Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods. Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with