Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 75 - 75
1 Nov 2016
Meneghini R
Full Access

Cementless femoral components have an excellent track record that includes efficient implantation and long-term survival, thus are the predominant stem utilised in North America. Femoral component stability and resistance to subsidence are critical for osseointegration and clinical success. Implant design, surgical technique, anatomic fit, and patient characteristics, such as bone quality, can all effect initial implant stability and resistance to subsidence. Variability in stem shape and in the anatomy of the proximal femoral metaphysis has been implicated in the failure of some stem designs. Biologic fixation obtained with osseointegration of cementless implants may improve implant longevity in young, active, and obese patients. Lack of intimate fit can lead to clinical complications such as subsidence, aseptic loosening, and peri-prosthetic fracture. Currently, there are several stem designs, all of which aim to achieve maximal femoral stability and minimal subsidence and include: Fit and Fill / Double Taper Proximally Porous Coated Stems; Parallel Sided Taper Wedge or “Blade” Stems; Wagner Style Conical Shape Splined Titanium Stems; Tapered Rectangular Cross-Section Zweymuller Stem; Fully-Porous Coated Stems; Modular Proximal Sleeve Fluted Stem; Anatomic Proximally Porous Coated Stems. The majority of patients with relatively straightforward anatomy can be treated with any of the aforementioned femoral implant types. However, more complicated femoral anatomy frequently requires a particular implant type to maximise stability and promote osseointegration. Stems with femoral deformity in the meta-diaphyseal region may require a shorter stem in order to avoid an osteotomy. Distorted femoral anatomy typically seen in childhood diseases, such as dysplasia, may require a modular proximal sleeve tapered fluted stem or Wagner style cone stem to impart optimal stem anteversion separate from the native femoral neck version. The most severe forms of dysplasia may require a shortening osteotomy and subsequent distal fixation and neck version flexibility, which can be addressed with a modular proximal sleeve fluted or fully porous coated stem. A stovepipe or osteoporotic femur may require a stem that engages more distally such as a conical splined tapered stem, a fully porous coated stem or even a cemented stem to achieve adequate stability. Finally, obese patients are a particular challenge and emerging data suggests that a morphologically based parallel-sided taper wedge stems may confer greater stability and resistance to subsidence in these patients. Ultimately, an appropriate selection algorithm will facilitate an appropriate match of the patient morphology with femoral implant geometry that facilitates stable fixation and osseointegration