When inserting a femoral stem, surgeons make use of many visual and tactile cues to be sure that the implant is correctly sized and well-seated. One such cue is the change of pitch that can be heard when the final
Aims. Cementless femoral stems must be correctly sized and well-seated to obtain satisfactory biological fixation. The change in sound that occurs during impaction of the
During broach preparation and implant insertion of the proximal femur the surgeon may be able to use audible pitch changes to judge broaching adequacy and implant position. The aim of this study was to analyse the sound produced and explain the sound spectra using acoustic physics. A highly sensitive microphone was used to digitally record the sound made during femoral preparation and definitive implant insertion in 9 patients undergoing total hip arthroplasty. The sound data was analysed using a fast Fournier transformation spectrum analyser. The highest 4 peak spectral amplitudes of the first broach, the last strike of the final broach and the definitive implant were recorded. The sound spectra produced by striking the implant introducer in isolation were analysed in a similar manner.Introduction
Methods
The February 2024 Hip & Pelvis Roundup. 360. looks at: Trial of vancomycin and cefazolin as surgical prophylaxis in arthroplasty; Is preoperative posterior femoral neck tilt a risk factor for fixation failure? Cemented versus uncemented hemiarthroplasty for displaced intracapsular fractures of the hip; Periprosthetic fractures in larger hydroxyapatite-coated stems: are collared stems a better alternative for total hip arthroplasty?; Postoperative periprosthetic fracture following hip arthroplasty with a polished taper slip versus composite beam stem; Is oral tranexamic acid as good as intravenous?; Stem design and the risk of early periprosthetic femur fractures following THA in elderly patients; Does powered
Total Hip Arthroplasty (THA) surgery is a physical and cognitive challenge for surgeons. Data on stress levels, cognitive and physical load of orthopaedic surgeons, as well as ergonomic impact, are limited. With and without the use of an automated impaction device, operational efficiency and the surgeon's ergonomic, mental, and physical load was investigated. In a total of thirty THA procedures, a standard manual technique was compared with an automated impaction device. Three computerized cognitive tasks (Simon, pattern comparison, and pursuit rotor) and five physical tests (isometric wall-sit, plank-to-fatigue, handgrip, supra-postural task, and shoulder endurance) were used to assess psychophysiological load of the surgeon. Surgeon's cortisol concentration was evaluated from saliva samples. Postural risk was assessed by Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). Efficiency was assessed by timing surgical steps and instrumentation flow. Cognitive performances after automated impaction showed faster response times and lower error rates with a greater time-on-target (+1.5 s) and a lower mouse deviation from target (−1.7 pixels). Manual impaction showed higher physical exhaustion in the isometric wall-sit test (10.6% vs. 22.9%), plank-to-fatigue (2.2% vs. 43.8%), the number of taps in the supra-postural task (−0.7% vs. −7.7%), handgrip force production in the dominant (−6.7% vs. −12.7%) and contralateral hand (+4.7% vs. +7.7%), and in shoulder endurance (−15s vs. −56s). An increase of 38.2% in salivary cortisol concentration between the midday (1.31 nmol/l) and afternoon session (1.81 nmol/l) was observed with manual impaction. After using automated impaction, salivary cortisol concentration decreased (−51.2%). Manual broaching time was on average 6′20’’ versus 7’3’’ with automated impaction. RULA of manual impaction scored 6 for cup impaction and 5 for
Introduction. Offset
This study used model-based radiostereometric analysis (MBRSA) to compare migration of a recently introduced cementless hip stem to an established hip stem of similar design. Novel design features of the newer hip stem included a greater thickness of hydroxyapatite coating and a blended compaction extraction
Introduction. In our institution, we started to perform THA with SuperPATH approach, including preservation of soft tissue around the hip (James Chow et al. Musculoskelet Med 2011) since July 2014, aiming for fast recovery and prevention of hip dislocation. For minimally-invasive approaches, however, there have been a few reports on malalignment of the implants related to shortage of operative field. The purpose of this study is to examine the short-term results of THA using SuperPATH, especially implant alignment. Materials and methods. We performed a study of 45 patients (45 hips) with osteoarthritis of the hip joint who had a THA with SuperPATH approach. There were 8 men and 37 women with an average age of 73 years, which were minimally 24 months followed. Dynasty Bioform cup and Profemur Z stem (Microport Orthopaedics) were used for all cases. Patients were clinically assessed with Merle d'Aubigne score and complications. Implant alignment and stability were radiologically evaluated by annual X-ray and CT acquired two months after surgery. Results. Merle d'Aubigne score was 10.2 (pain:2.8, mobility:4.4 walking ability:3.0) preoperatively and 16.6(pain:5.8, mobility:5.8, walking ability:5.0) at the latest follow-up. There were no dislocation and infection, but intraoperative proximal femoral fracture was found for two cases, which was managed to treat with additional circulating wire intraoperatively. Latest follow-up X-ray image showed 95% of the stem A-P alignment to be within 2 degrees and 5% to be more than 2 degrees and less than 5 degrees, while 44% of the stem lateral alignment to be within 2 degrees, 47% to be more than 2 degrees and less than 5 degrees, and 8% to be more than 5 degrees. From CT images averaged cup position found to be 40±5 degrees for inclination, and 19±5 degrees for anatomic anteversion, averaged stem anteversion to be 33±9 degrees. Annual X-ray evaluation showed no radiolucent line and less than Grade 2 stress-shielding (Engh classification) around the implants for all cases. One case had more than 5mm subsidence of the stem in early postoperative period, but not progressively subsided. No loosening of components was evident. Discussion and Conclusion. Many minimally-invasive approaches have developed, there have been many reports on fast recovery and low incidence of postoperative hip dislocation, however, the risk of complications or malalignment related to shortage of operative field has been pointed out. In this study, intraoperative proximal femoral fracture occurred for two cases. Also, though there were no loosening and the components position seemed excellent but lateral view of the X-ray showed 8% to be more than 5 degrees tilting alignment, resulting from
INTRODUCTION. The Woodpecker pneumatic broaching system facilitates femoral preparation to achieve optimal primary fixation of the stem in direct anterior hip replacement using a standard operating table. The high-frequency axial impulses of the device reduce excess bone tension, intraoperative femoral fractures and overall operating time. The Woodpecker device provides uniformity and enhanced control while broaching, optimizing cortical contact between the femur and implant and thereby maximizing prosthetic axial stability and longevity. This study aims to describe a single surgeon's experience using the Woodpecker pneumatic broaching system in 649 cases of direct anterior approach (DAA) total hip arthroplasties to determine the device's safety and efficacy. METHODOLOGY. All consecutive patients undergoing elective anterior bikini total hip arthroplasties (THA) performed by a single surgeon between July 2013 and June 2018 were included. Patients undergoing a THA with the use of the Woodpecker device through a different surgical approach, revision THA or arthroplasties for a fractured neck of femur were excluded (n=219). The pneumatic device was used for
The current decade has seen a marked rise in popularity of minimally invasive hip replacement, done through a variety of surgical approaches. A specific downside to the direct anterior approach includes the significant difficulty getting a “straight shot” down the femoral canal for either straight, nonflexible reaming or broaching as with standard approaches. Improper alignment in the femoral canal can lead to sub-optimal load transfer and thus compromised fixation. The
Introduction. In cementless THA the incidence of intraoperative fracture has been reported to be as high 28% [1]. To mitigate these surgical complications, investigators have explored vibro-acoustic techniques for identifying fracture [2–5]. These methods, however, must be simple, efficient, and robust as well as integrate with workflow and sterility. Early work suggests an energy-based method using inexpensive sensors can detect fracture and appears robust to variability in striking conditions [4–5]. The orthopaedic community is also considering powered impaction as another way to minimize the risk of fracture [6– 8], yet the authors are unaware of attempts to provide sensor feedback perhaps due to challenges from the noise and vibrations generated during powered impaction. Therefore, this study tests the hypothesis that vibration frequency analysis from an accelerometer mounted on a powered impactor coupled to a seated
Femoral stress shielding in cementless THA is a potential complication commonly observed in distally loading press-fit stems. This prospective study describes long-term femoral bone remodeling in cementless THA at a mean of 17 years (range: 15 to 20) in 208 consecutive fully HA-coated stems (Corail, DePuy Int. Ltd, Leeds, UK). All THA were performed by one group of surgeons between 1986 and 1991. The concept of surgical technique included impaction of metaphyseal bone utilizing bland
Femoral stress shielding in cementless THA is a potential complication commonly observed in distally loading press-fit stems. This prospective study describes long-term femoral bone remodeling in cementless THA at a mean of 17 years (range: 15 to 20) in 208 consecutive fully HA-coated stems (Corail, DePuy Int. Ltd, Leeds, UK). All THA were performed by one group of surgeons between 1986 and 1991. The concept of surgical technique included impaction of metaphyseal bone utilizing bland
Femoral stress shielding in cementless THA is a potential complication commonly observed in distally loading press-fit stems. This prospective study describes long-term femoral bone remodeling in cementless THA at a mean of 17 years (range: 15 to 20) in 208 consecutive fully HA-coated stems (Corail, DePuy Int. Ltd, Leeds, UK). All THA were performed by one group of surgeons between 1986 and 1991. The concept of surgical technique included impaction of metaphyseal bone utilizing bland
Femoral stress shielding in cementless THA is a potential complication commonly observed in cementless distally loading press-fit stems. Long-term metaphyseal fixation and proximal load transfer is desired. Is routine autologous metaphyseal bone impaction and proximal primary stability an answer to this goal?. This prospective study describes long-term femoral bone remodeling and load transfer in cementless THA at a mean of 17 years (range: 15 to 20 years) in 208 consecutive fully HA-coated stems (Corail). All primary THA were performed by one group of surgeons between 1986 and 1991. The concept of surgical technique included impaction of autologous metaphyseal bone using bland
Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component. We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.Aims
Methods
Purpose:. In order to acquire good stability of an arthroplasty hip, the proper placement of the implants, which prevents impingement between the stem neck and the socket, is important. In general, the anteversion of the uncemented femoral stem depends on the relationship between the three-dimensional structure of the proximal femoral canal and the proximal stem geometry. The exact degree of the anteversion will be known just after broaching during the operation. If the stem anteversion could be forecasted, preoperative planning of the socket placement would be relatively easy. Furthermore, when a high degree of anteversion is forecasted, a special femoral stem to reduce it, such as a modular stem, could be prepared. However, we experienced that the preoperatively measured anteversion of the femoral neck using computer tomography (CT) was sometimes different from that of the stem measured during the operation. The purpose of this study was to investigate whether the preoperative measurement would be helpful to predict the stem anteversion by examining the relationship between the anteversion of the femoral neck and the stem. Patients and methods:. A total of 57 primary THAs by one senior surgeon from April 2011 until March 2012 were carried out. Two THAs using a modular stem and one for the hip after previous proximal femoral osteotomy were excluded. The remaining 54 THAs were examined. The used uncemented stems were designed for proximal metaphyseal fixation. CT scans, including the distal femoral condyles as well as the hips, were carried out in all cases preoperatively. The anteversion of the femoral neck was measured as the angle of the maximum longitudinal line of the cross section of the femoral neck to the line connecting the posterior surfaces of both of the distal femoral condyles (Fig. 1). The femoral neck anteversion was measured at three levels (Fig. 1). The stem anteversion was measured just after the
Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods