Introduction and Objective. Bone remodelling is a continuous process whereby osteocytes regulate the activity of osteoblasts and osteoclasts to repair loading-induced microdamage. While many in vitro studies have established the role of paracrine factors (e.g., RANKL/OPG) and cellular pathways involved in bone homeostasis, these techniques are generally limited to two-dimensional cell culture, which neglects the role of the native extracellular matrix in maintaining the phenotype of osteocyte. Recently,
In recent years, there has been a growing interest, in many fields of medicine, in the use of bone adhesives that are biodegraded to non-toxic products and resorbed after fulfilling their function in contact with living tissue. Biomechanical properties of newly developed bone glue, such as adhesion to bone and elastic modulus were tested in our study. Newly developed injectable biodegradable “self-setting” bone adhesive prepared from inorganic tricalcium phosphate powder and aqueous solution of organic thermogelling polymers was used for ex-vivo fixing fractured pig femur. Ex-vivo biomechanical tests were performed on 45 fresh pig femurs. Control group consist of 10 healthy bones, tested group was created by 35 bones with artificial fractures in diaphysis – oblique (O) and bending wedge (BW) type of fracture. Tested group were divided to following 4 subgroups (sg); sg1 – O fracture (n=15) glued together with 3 different type of bone adhesives, sg2 BW fracture (n=5) glued together with bone adhesive (n=5); sg3 – BW fracture fixed with locking compression plate (LCP), n=5; sg4 – BW fracture fixed with LCP in combination with bone adhesive. Three-point bending force and shear compression tests were performed on linear electrodynamic test instrument (ElectroPuls E10000, Instron). Femurs from sg1, sg2 and sg4 were tested on Micro-CT before and after biomechanical testing.Introduction
Material and methods
Articular cartilage has poor repair potential and the tissue formed is mechanically incompetent. Mesenchymal stromal cells (MSCs) show chondrogenic properties and the ability to re-grow cartilage, however a viable human model for testing cartilage regeneration and repair is lacking. Here, we describe an ex vivo pre-clinical femoral head model for studying human cartilage repair using MSCs. Human femoral heads (FHs) were obtained following femoral neck fracture with ethical permission/patient consent and full-depth cartilage wells made using a 3mm biopsy punch. Pancreas-derived mesenchymal stromal cells (P-MSC) were prepared in culture media at ~5000 cells/20µl and added to each well and leakage prevented with fibrin sealant. After 24hrs, the sealant was removed and medium replaced with StemPro. TM. chondrogenesis differentiation medium. The FHs were incubated (37. o. C;5% CO. 2. ) for 3wks, followed by a further 3wks in standard medium with 10% human serum with regular medium changes throughout. Compared to wells with medium only, A-MSCs produced a thin film across the wells which was excised en-block, fixed with 4% paraformaldehyde and frozen for cryo-sectioning. The cell/tissue films varied in thickness ranging over 20-440µm (82±21µm; mean±SEM; N=3 FHs). The thickness of MSC films abutting the cartilage wells was variable but generally greater (15-1880µm) than across the wells, suggesting an attachment to native articular cartilage. Staining of the films using safranin O (for glycosaminoglycans; quantified using ImageJ) was variable (3±8%; mean±SEM; N=3) but in one experiment reached 20% of the adjacent cartilage. A preliminary assessment of the repair tissue gave an O'Driscoll score of 10/24 (24 is best). These preliminary results suggest the
A novel An The new model retained a high level of cell viability after three weeks of The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors.
The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an Fresh cancellous bone cylinders (n=8) were harvested from porcine femur and implanted with additive manufactured porous titanium implants (Ø4 × 15 mm). To simulate physiological conditions, n=3 bone cylinders were tested in a bioreactor system with a cyclic 30 µm displacement at 1Hz for 300 cycles every day for 15 days in a total of 21 days culture. The chamber was also perfused with culture medium using a peristaltic pump. Control bone cylinders were cultured under static conditions (n=5). Samples were calcein stained at day 7. Post-testing, bone cylinders were formalin fixed and bony ingrowth was measured via microscopy.Abstract
Introduction
Methods
Translational models for OA have used a variety of small (mouse, rat) and large (sheep, pig) animal models to evaluate the efficacy of a specific therapy. Clinical trials based on the results of these animal models have yielded mixed results with respect to the treatment of the disease. Due to greater stringency in EU regulations in the use of animal models for research,
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an
Objectives. The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an
Novel biomaterials are being developed and studied, intended to be applied as bone graft substitute materials. Typically, these materials are being tested in in vitro setups, where among others their cytotoxicity and alkaline phosphatase activity (as a marker for osteoblastic differentiation) are being evaluated. However, it has been reported that in vitro tests correlate poorly with in vivo results and therefore many promising biomaterials may not reach the clinic as a bone graft substitute product. One of the reasons for the poor correlation, may be the minimal complexity of the in vitro tests, as compared to the in vivo environment.
Introduction and Objective. Traditionally, osteoarthritis (OA) has been associated mostly with degradation of cartilage only. More recently, it has been established that other joint tissues, in particular bone, are also centrally involved. However, the link between these two tissues remains unclear. This relationship is particularly evident in post-traumatic OA (PTOA), where bone marrow lesions (BMLs), as well as fluctuating levels of inflammation, are present long before cartilage degradation begins. The process of bone-cartilage crosstalk has been challenging to study due to its multi-tissue complexity. Thus, the use of explant model systems have been crucial in advancing our knowledge. Thus, we developed a novel patellar explant model, to study bone cartilage crosstalk, in particular related to subchondral bone damage, as an alternative to traditional femoral head explants or cylindrical core specimens. The commonly used osteochondral explant models are limited, for our application, since they involve bone damage during harvest. The specifics aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response and mechanical stimulation to determine the subsequent developments of PTOA. Materials and Methods. Lewis rats (n=48) were used to obtain patellar and femoral head explants which were harvested under an institutional ethical approval license. Explants were maintained in high glucose media (containing supplements), under sterile culture conditions. Initially, we characterised undamaged patellar explants and compared them with the commonly used femoral head. First, tissue viability was assessed using an assay of metabolic activity and cell damage. Second, we created chemical and mechanical damage in the form of IL-1B treatment, and mechanical stimulation, to replicate damage. Standard biochemical assays, histological assays and microstructural assays were used to evaluate responses. For chemical damage, explants were exposed to 10ng/ml of IL-1B for 24 hours at 0, 1, 3 and 7 days after harvesting. For mechanical damage, tissues were exposed to mechanical compression at 0.5 Hz, 10 % strain for 10 cycles, for 7 days. Contralateral patellae served as controls. In both groups, sGAG, ADAMTS4, and MMP-13 were measured as an assessment of representative cartilage responses while ALP, TRAP and CTSK were assessed as a representative of bone responses. In addition to this, histomorphometric, and immunohistochemical, evaluations of each explant system were also carried out. Results. Our results confirm that the patellar explant system is an excellent
Advances in our understanding of skeletal stem cells and their role in bone development and repair, offer the potential to open new frontiers in bone regeneration. However, the ability to harness these cells to replace or restore the function of traumatised or lost skeletal tissue as a consequence of age or disease remains a significant challenge. We have developed protocols for the isolation, expansion and translational application of skeletal cell populations with cues from developmental biology informed by in vitro and
This study aims to compare the biomechanical properties of the “Double Lasso-Loop” suture anchor (DLSA) technique with the commonly performed interference screw (IS) technique in an
Intervertebral disc (IVD) degeneration is inadequately understood due to the lack of in vitro systems that fully mimic the mechanical and biological complexity of this organ. We have recently made an advancement by developing a bioreactor able to simulate physiological, multiaxial IVD loading and maintain the biological environment in
Background. Bone is a hierarchically structured hard tissue that consists of approximately 70 wt% low-crystallinity hydroxyapatite. Intricate tubular channels, such as Haversian canals, Volkman's canals, and canaliculi are a preserved feature of bone microstructure. These structures provide pathways for vasculature and facilitate cell-to-cell communication processes, together supporting viability of cellular components and aiding in remodeling processes. Unfortunately, many commercial bone augmentation materials consist of highly crystalline phases that are absent of the structuring present within the native tissue they are replacing. This work reports on a the development of a novel bone augmentation material that is able to generate biologically analogous tubular calcium phosphate mineral structures from hydrogel-based spheres that can be packed into defects similar to those encountered in vivo. Experimental. Calcium loaded spheres were made by adding 5 wt% agar powder to 1 M calcium nitrate solutions, before heating the mixture to 80–90 oC and feeding droplets of gel into a reservoir of liquid nitrogen. Deposition of tubular mineral was initiated by exposure to ammonium phosphate solutions at concentrations between 500 mM and 1 M, and was characterized by micro-XRF mapping, XRD and SEM techniques. For an
We compared the bulking and tensile strength of the Pennington modified Kessler, Cruciate and the Savage repairs in an
Few studies have investigated the direct effect of bacteria and their products on articular cartilage chondrocytes ex vivo. An
Introduction. Elevated remodelling of subchondral bone and marrow tissues has been firmly established as diagnostic and prognostic radiological imaging marker for human osteoarthritis. While these tissues are considered as promising targets for disease-modifying OA drugs, the development of novel treatment approaches is complicated by the lack of knowledge whether similar tissue changes occur in rodent OA models and poor understanding of joint-specific molecular and cellular pathomechanisms in human OA. Here, we describe the establishment of a human OA explant model to address this crucial niche in translational preclinical OA research. Methods. Osteochondral (knee, spine) and bone (iliac crest) clinical specimens were acquired from patients undergoing total knee arthroplasty (n=4) or lumbar spine fusion using bone autografts (n=6). Fresh specimens were immediately cut in equal-sized samples (50–500 mg wet weight) and cultured in 8 mL osteogenic medium for one week. Samples were either left untreated (control) or stimulated with lipopolysaccharide (LPS, 100 ng/mL) in the absence and presence of transforming growth factor-beta inhibitor (SB-505124, 10 μm). Pro-collagen-I (Col-I), interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1) secretion was determined in conditioned medium by ELISA. Tissue viability was assessed using MTT and alkaline phosphatase (ALP) activity staining. Results. Explanted tissues remained viable after one week culture in control and treatment conditions. Osteocytes, subchondral marrow spaces and calcified cartilage stained positive for ALP activity without gross morphological differences between groups. Median basal secretion levels were Col-I (2.3 ng/mg), IL-6 (90 pg/mg) and MCP-1 (25 pg/mg). LPS treatment led to a significant increase of IL-6 (330 pg/mg) and MCP-1 (70 pg/mg), but not Col-I secretion. Interestingly, inhibition of TGF-beta signalling in osteochondral tissues specifically reduced Col-I levels (0.4 ng/mg) compared to controls and LPS-treated samples. LPS-induced IL-6 and MCP-1 levels were slightly reduced (−120 pg/mg, p=0.03) and increased (+50 pg/mg) by SB-505124 treatment, respectively. IL-6 and MCP-1 levels were strongly correlated under basal (r=0.80) and treatment conditions (r=0.62). Conclusion. In this study, we provided proof of concept for the first
The intra-articular administration of tranexamic acid (TXA) has
been shown to be effective in reducing blood loss in unicompartmental
knee arthroplasty and anterior cruciate reconstruction. The effects
on human articular cartilage, however, remains unknown. Our aim,
in this study, was to investigate any detrimental effect of TXA
on chondrocytes, and to establish if there was a safe dose for its
use in clinical practice. The hypothesis was that TXA would cause
a dose-dependent damage to human articular cartilage. The cellular morphology, adhesion, metabolic activity, and viability
of human chondrocytes when increasing the concentration (0 mg/ml
to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were
analyzed in a 2D model. This was then repeated, excluding cellular
adhesion, in a 3D model and confirmed in viable samples of articular cartilage.Aims
Materials and Methods
All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.Objectives
Materials and Methods