Advertisement for orthosearch.org.uk
Results 1 - 20 of 181
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 497 - 501
1 Apr 2014
Banche G Allizond V Bracco P Bistolfi A Boffano M Cimino A Brach del Prever EM Cuffini AM

We have assessed the different adhesive properties of some of the most common bacteria associated with periprosthetic joint infection on various types of ultra high molecular Weight Polyethylene (UHMWPE). Quantitative in vitro analysis of the adhesion of biofilm producing strains of Staphylococcus aureus and Escherichia coli to physically and chemically characterised standard UHMWPE (PE), vitamin E blended UHMWPE (VE-PE) and oxidised UHMWPE (OX-PE) was performed using a sonication protocol. A significant decreased bacterial adhesion was registered for both strains on VE-PE, in comparison with that observed on PE, within 48 hours of observation (S. aureus p = 0.024 and E. coli p = 0.008). Since Vitamin E reduces bacterial adhesive ability, VE-stabilised UHMWPE could be valuable in joint replacement by presenting excellent mechanical properties, while reducing bacterial adhesiveness. Cite this article: Bone Joint J 2014;96-B:497–501


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2019
Wang L Luca MD Tkhilaishvili T Gonzalez-Moreno M Trampuz A
Full Access

Aim

Ciprofloxacin is recommended as anti-biofilm therapy for gram-negative periprosthetic joint infection. With ciprofloxacin monotherapy, resistance in gram-negative bacteria was observed. Therefore, we evaluated in vitro synergistic activity of fosfomycin, ciprofloxacin and gentamicin combinations against biofilms formed by E. coli and P. aeruginosa strains.

Method

E. coli ATCC 25922, P. aeruginosa ATCC 27853 and 15 clinical isolates were used for this study. MIC values were determined by Etest. Biofilms were formed on porous sintered glass beads for 24h and exposed to antibiotics for further 24h. Viability of bacteria on the glass beads after antibiotic treatment was detected by cfu counting of the sonicated beads. The minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill biofilm cells. Synergistic activity against biofilm was evaluated by calculation of the fractional inhibitory concentration index (FICI).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 3 - 3
1 Dec 2021
Ferrari MC Fischbacher A Casana M Gasol B Pérez-Prieto D Borens O
Full Access

Aim. We aimed to assess the incidence and the outcome of Gram-negative prosthetic-joint infections (PJI) in 3 international tertiary hospital. Method. We included patients with Gram-negative PJI at Humanitas Clinical and Research Hospital (Milan, Italy), Centre Hospitalier Universitaire Vaudois (Lausanne, Switzerland) and Hospital Parc de Salut Mar (Barcelona, Spain) between 2014 and 2018 in a retrospective cohort. We described the treatment's success rate according to Gram-negative species and type of surgical procedure. Results. In the present cohort we have 780 PJI out of which 71 (9.1%) were caused by Gram-negative bacteria (polymicrobial infection 30%, Escherichia coli 25%, Pseudomonas aeruginosa 20%, Proteus spp. 4%, Klebsiella spp. 3%, Morganella morganii 3%, Enterobacter 3%, others 12%). Gram-negative PJI were more common in females (60%) than males (40%). Sixty percent had a hip infection, 40% a knee infection, the median age was 74 years and the median ASA score was 3. It was a chronic infection in 60% of the cases and an acute one in 40%. Two-step exchange was performed in 55%, débridement and retention (DAIR) in 30%, one-step exchange in 11% and implant removal without replacement in 4% of the patients. The overall treatment success rate was 89%. The success rate was better for two-step exchange (95%) compared to DAIR (81%) and one-step exchange (87%) (p=0.068). The median antibiotic duration was 68 days and ciprofloxacin was used in 70% of the cured patients versus in 88% of the failures (p=0.388). Infections caused by Escherichia coli were associated with a lower success rate (83%) especially compared to Pseudomonas aeruginosa (93%) and polymicrobial infections (90%) (p=0.358). Finally, the success rate was better in knee PJI compared to hip PJI (97% versus 83%, p=0.121) and in females compared to males (93% versus 82%, p=0.121). Conclusions. The treatment's success of Gram-negative PJI is comparable to reported rates for all bacteria. However, our results suggest that surgical management with two-step exchange might be useful in selected patients’ groups such as those with Escherichia coli PJI. Moreover, ciprofloxacin use seems not to improve cure rate


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 284 - 293
1 Mar 2023
Li Y Zhang X Ji B Wulamu W Yushan N Guo X Cao L

Aims. Gram-negative periprosthetic joint infection (PJI) has been poorly studied despite its rapidly increasing incidence. Treatment with one-stage revision using intra-articular (IA) infusion of antibiotics may offer a reasonable alternative with a distinct advantage of providing a means of delivering the drug in high concentrations. Carbapenems are regarded as the last line of defense against severe Gram-negative or polymicrobial infection. This study presents the results of one-stage revision using intra-articular carbapenem infusion for treating Gram-negative PJI, and analyzes the characteristics of bacteria distribution and drug sensitivity. Methods. We retrospectively reviewed 32 patients (22 hips and 11 knees) who underwent single-stage revision combined with IA carbapenem infusion between November 2013 and March 2020. The IA and intravenous (IV) carbapenem infusions were administered for a single Gram-negative infection, and IV vancomycin combined with IA carbapenems and vancomycin was applied for polymicrobial infection including Gram-negative bacteria. The bacterial community distribution, drug sensitivity, infection control rate, functional recovery, and complications were evaluated. Reinfection or death caused by PJI was regarded as a treatment failure. Results. Gram-negative PJI was mainly caused by Escherichia coli (8/34), Enterobacter cloacae (7/34), and Klebsiella pneumoniae (5/34). Seven cases (7/32) involved polymicrobial PJIs. The resistance rates of penicillin, cephalosporin, quinolones, and sulfonamides were > 10%, and all penicillin and partial cephalosporins (first and second generation) were > 30%. Of 32 cases, treatment failed to eradicate infection in only three cases (9.4%), at a mean follow-up of 55.1 months (SD 25 to 90). The mean postoperative Harris Hip Score and Hospital for Special Surgery knee score at the most recent follow-up were 81 (62 to 91) and 79 (56 to 89), respectively. One patient developed a fistula, and another presented with a local rash on an infected joint. Conclusion. The use of IA carbapenem delivered alongside one-stage revision effectively controlled Gram-negative infection and obtained acceptable clinical outcomes with few complications. Notably, first- and second-generation cephalosporins and penicillin should be administrated with caution, due to a high incidence of resistance. Cite this article: Bone Joint J 2023;105-B(3):284–293


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli. Results. After immunity training, the levels of pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interleukin (IL)-17A) and chemokines (CCL5, CXCL4, CXCL5, CXCL7, CXCL12) increased significantly in platelet releasate, while the levels of anti-inflammatory cytokines (IL-4, IL-13) decreased. Other platelet-secreted factors (e.g. platelet-derived growth factor (PDGF)-AA, PDGF-AB, PDGF-BB, cathepsin D, serotonin, and histamine) were statistically indistinguishable between the two groups. Transfusion of platelets from trained mice into naïve mice reduced infection risk and bacterial burden after local or systemic challenge with either S. aureus or E. coli. Conclusion. Immunity training altered platelet releasate by increasing the levels of inflammatory cytokines/chemokines and decreasing the levels of anti-inflammatory cytokines. Transfusion of platelets from immunity-trained mice conferred protection against bone and joint infection, suggesting that alteration of platelet releasate might be an important mechanism underlying trained immunity and may have clinical implications. Cite this article: Bone Joint Res 2022;11(2):73–81


Bone & Joint Open
Vol. 5, Issue 5 | Pages 435 - 443
23 May 2024
Tadross D McGrory C Greig J Townsend R Chiverton N Highland A Breakwell L Cole AA

Aims. Gram-negative infections are associated with comorbid patients, but outcomes are less well understood. This study reviewed diagnosis, management, and treatment for a cohort treated in a tertiary spinal centre. Methods. A retrospective review was performed of all gram-negative spinal infections (n = 32; median age 71 years; interquartile range 60 to 78), excluding surgical site infections, at a single centre between 2015 to 2020 with two- to six-year follow-up. Information regarding organism identification, antibiotic regime, and treatment outcomes (including clinical, radiological, and biochemical) were collected from clinical notes. Results. All patients had comorbidities and/or non-spinal procedures within the previous year. Most infections affected lumbar segments (20/32), with Escherichia coli the commonest organism (17/32). Causative organisms were identified by blood culture (23/32), biopsy/aspiration (7/32), or intraoperative samples (2/32). There were 56 different antibiotic regimes, with oral (PO) ciprofloxacin being the most prevalent (13/56; 17.6%). Multilevel, contiguous infections were common (8/32; 25%), usually resulting in bone destruction and collapse. Epidural collections were seen in 13/32 (40.6%). In total, five patients required surgery, three for neurological deterioration. Overall, 24 patients improved or recovered with a mean halving of CRP at 8.5 days (SD 6). At the time of review (two to six years post-diagnosis), 16 patients (50%) were deceased. Conclusion. This is the largest published cohort of gram-negative spinal infections. In older patients with comorbidities and/or previous interventions in the last year, a high level of suspicion must be given to gram-negative infection with blood cultures and biopsy essential. Early organism identification permits targeted treatment and good initial clinical outcomes; however, mortality is 50% in this cohort at a mean of 4.2 years (2 to 6) after diagnosis. Cite this article: Bone Jt Open 2024;5(5):435–443


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 217 - 223
1 Feb 2013
Hwang CJ Lee JH Baek H Chang B Lee C

We evaluated the efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E-BMP-2) in a mini-pig model of spinal anterior interbody fusion. A total of 14 male mini-pigs underwent three-level anterior lumbar interbody fusion using polyether etherketone (PEEK) cages containing porous hydroxyapatite (HA). Four groups of cages were prepared: 1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks after surgery the mini-pigs were killed and the specimens were evaluated by gross inspection and manual palpation, radiological evaluation including plain radiographs and micro-CT scans, and histological analysis. Rates of fusion within PEEK cages and overall union rates were calculated, and bone formation outside vertebrae was evaluated. One animal died post-operatively and was excluded, and one section was lost and also excluded, leaving 38 sites for assessment. This rate of fusion within cages was 30.0% (three of ten) in the control group, 44.4% (four of nine) in the 50 μg E-BMP-2 group, 60.0% (six of ten) in the 200 μg E-BMP-2 group, and 77.8% (seven of nine) in the 800 μg E-BMP-2 group. Fusion rate was significantly increased by the addition of E-BMP-2 and with increasing E-BMP-2 dose (p = 0.046). In a mini-pig spinal anterior interbody fusion model using porous HA as a carrier, the implantation of E-BMP-2-loaded PEEK cages improved the fusion rate compared with PEEK cages alone, an effect that was significantly increased with increasing E-BMP-2 dosage.

Cite this article: Bone Joint J 2013;95-B:217–23.


Aims. In wound irrigation, 1 mM ethylenediaminetetraacetic acid (EDTA) is more efficacious than normal saline (NS) in removing bacteria from a contaminated wound. However, the optimal EDTA concentration remains unknown for different animal wound models. Methods. The cell toxicity of different concentrations of EDTA dissolved in NS (EDTA-NS) was assessed by Cell Counting Kit-8 (CCK-8). Various concentrations of EDTA-NS irrigation solution were compared in three female Sprague-Dawley rat models: 1) a skin defect; 2) a bone exposed; and 3) a wound with an intra-articular implant. All three models were contaminated with Staphylococcus aureus or Escherichia coli. EDTA was dissolved at a concentration of 0 (as control), 0.1, 0.5, 1, 2, 5, 10, 50, and 100 mM in sterile NS. Samples were collected from the wounds and cultured. The bacterial culture-positive rate (colony formation) and infection rate (pus formation) of each treatment group were compared after irrigation and debridement. Results. Cell viability intervened below 10 mM concentrations of EDTA-NS showed no cytotoxicity. Concentrations of 1, 2, and 5 mM EDTA-NS had lower rates of infection and positive cultures for S. aureus and E. coli compared with other concentrations in the skin defect model. For the bone exposed model, 0.5, 1, and 2 mM EDTA-NS had lower rates of infection and positive cultures. For intra-articular implant models 10 and 50 mM, EDTA-NS had the lowest rates of infection and positive cultures. Conclusion. The concentrations of EDTA-NS below 10 mM are safe for irrigation. The optimal concentration of EDTA-NS varies by type of wound after experimental inoculation of three types of wound. Cite this article: Bone Joint Res 2021;10(1):68–76


Objectives. Irrigation is the cornerstone of treating skeletal infection by eliminating pathogens in wounds. A previous study shows that irrigation with normal saline (0.9%) and ethylenediaminetetraacetic acid (EDTA) could improve the removal of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) compared with normal saline (NS) alone. However, it is still unclear whether EDTA solution is effective against infection with drug-resistant bacteria. Methods. We established three wound infection models (skin defect, bone-exposed, implant-exposed) by inoculating the wounds with a variety of representative drug-resistant bacteria including methicillin-resistant S. aureus (MRSA), extended spectrum beta-lactamase-producing E. coli (ESBL-EC), multidrug-resistant Pseudomonas aeruginosa (MRPA), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Acinetobacter baumannii (MRAB), multidrug-resistant Enterobacter (MRE), and multidrug-resistant Proteus mirabilis (MRPM). Irrigation and debridement were repeated until the wound culture became negative. The operating times required to eliminate pathogens in wounds were compared through survival analysis. Results. Compared with other groups (NS, castile soap, benzalkonium chloride, and bacitracin), the EDTA group required fewer debridement and irrigation operations to achieve pathogen eradication in all three models of wound infection. Conclusion. Irrigation with EDTA solution was more effective than the other irrigation fluids used in the treatment of wound infections caused by drug-resistant pathogens. Cite this article: Z. Deng, F. Liu, C. Li. Therapeutic effect of ethylenediaminetetraacetic acid irrigation solution against wound infection with drug-resistant bacteria in a rat model: an animal study. Bone Joint Res 2019;8:189–198. DOI: 10.1302/2046-3758.85.BJR-2018-0280.R3


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 131 - 131
1 Mar 2009
Bielecki T Gazdzik T
Full Access

Introduction: Platelets play a central role in hemostasis and healing processes. Upon their activation, platelet alfa-granules release over 30 cytokines including platelet-derived growth factor (PDGF), transforming growth factor-alfa (TGF-alfa), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), epidermal growth factor (EGF) and also active substances like serotonin, catecholamines, von Willebrand factor, proaccelerin, osteonectin and antimicrobial proteins. By concentrating platelets, platelet-rich plasma (PRP) with higher levels of growth factors might be reached, which could stimulate the healing processes. The activator for PRP is a mixture of thrombin and calcium chloride. After connecting these substances platelet-rich gel (PRG) is formed. Aims: In present study, we investigated in vitro antimicrobial activity of PRG after antibiotic administration. Material and Methods: 30 minutes after iv Amoxillin/ clavulanic acid administration 54 ml of whole blood was collected from each of 10 donors. PRPs were prepared with using GPS system from Biomet. In vitro laboratory susceptibility to PRG was determined by the Kirby-Bauer disc diffusion method on Mueller-Hinton agar (Becton Dickinson). Baseline antimicrobial activity was assessed by measuring the zones of inhibition. Agar plates were coated with one of the following strain: Staphylococcus aureus ATCC 43300 (MRSA), Staphylococcus aureus ATCC 25923 (MSSA), Klebsiella pneumoniae ATCC 700603 (ESBL), Escherichia coli ATCC 35218 (ESBL), Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212 and Pseudomonas aeruginosa ATCC 27853. Results: We tested 10 samples of PRG. Zones of inhibition produced by PRG ranged between 6 – 23 mm in diameter. PRG inhibited the growth of Staphylococcus aureus. PG also was active against Escherichia coli, Enterococcus faecalis. No activity against Klebsiella pneumoniae and Pseudomonas aeruginosa was detected. Conclusions: Our previous study showed PRG no activity against Enterococcus faecalis without antibiotic administration. In this investigation we observed PRG strong activity against this bacteria after iv Amoxicillin-clavulanic acid administration. In infections during antibiotic treatment, PRG antimicrobial properties are enhanced by antibiotics that are concentrated in plasma


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 126 - 130
1 Jan 2011
Bruins MJ Zwiers JH Verheyen CCPM Wolfhagen MJHM

Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive. We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of Escherichia coli and Pseudomonas aeruginosa in ioxithalamate, one of the older ionic media. The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 89 - 89
10 Feb 2023
Parker J Lim K Woodfield T Calhaem I Hooper. G
Full Access

Hypochlorous acid (HOCl) is a potent anti-bacterial agent which could reduce periprosthetic joint infection. Early infection complications in joint replacements are often considered to be due to local contamination at the time of surgery and result in a significant socioeconomic cost. Current theatre cleaning procedures produce “clean” operating theatres which still contain bacteria (colony forming units, CFU). Reducing this bacterial load may reduce local contamination at the time of surgery. HOCl is produced naturally in the human neutrophil and has been implicated as the primary agent involved in bacterial killing during this process. In vitro research confirms its efficacy against essentially all clinically relevant bacteria. The recent advent of commercial production of HOCl, delivered as a fog, has resulted in extensive use in the food industry. Reported lack of corrosion and high anti-bacterial potency are seen as two key factors for the use of HOCl in the orthopaedic environment. Prior work by the authors comparing human cell toxicity of HOCl, chlorhexidine and iodine solutions shows favourable results. This study evaluates use of neutral HOCl applied as a dry room fog to decrease bacteria in the operating theatre environment. Using an animal operating theatre as the test site, bacterial swabs were taken from ten 100cm. 2. sample areas before standard cleaning with detergent, after standard cleaning, and again after 60 minutes exposure to HOCl fog. After standard cleaning, 6 of 10 sample sites recorded significant bacterial growth (>10 CFU/100cm. 2. ). After exposure to HOCl fog, growth in all 10 sites was below detection limits (<10 CFU/100cm. 2. ). This was repeated with specific exposure to Staphylococcus aureus and Escherichia coli. We can conclude that HOCl is effective when used as a fogging agent to reduce bacterial loading within an operating theatre environment and as such has significant potential to reduce intraoperative contamination and periprosthetic infection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 6 - 6
24 Nov 2023
Soares F Santos INM Seriacopi LS Durigon TS Cunha CC Dell Aquila AM Salles M
Full Access

Aim. Currently, gram-negative bacteria (GNB), including multidrug-resistant (MDR-GNB) pathogens, are gaining importance in the aetiology of prosthetic joint infection (PJI). To characterize the antimicrobial resistance patterns of Gram-negative bacteria (GNB) causing hip prosthetic joint infections in elderly patients treated at a Brazilian tertiary academic hospital. Method. This is a retrospective, cross-sectional study of patients over 60 years of age undergoing hip arthroplasty from 2018 to 2023 at a tertiary academic trauma, which were diagnosed with hip prosthetic joint infection. PJI diagnosed was based on EBJIS criteria, in which intraoperative tissue cultures identified the pathogens. Demographics, reason for arthroplasty, type of implant and susceptibility patterns using disk diffusion method were analysed. Results. Overall, among 17 elderly patients diagnosed with hip infected arthroplasty, 45 bacterial isolated were identified. Debridement, irrigation, antibiotic and implant retention (DAIR) procedures due to uncontrolled infection occurred in 47.0% (n=8/17), and five patients underwent more than two DAIR surgeries. Tissue cultures yielded eleven different bacterial species, with GNB accounted for 64.4% (n=29/45) of pathogens. Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Pseudomonas aeruginosa were identified in 34.5% (n=10/29), 17.25% (n=5/29), 13.8% (n=4/29), and 13.8% (n=4/29), respectively. In the resistance profile analysis, E. coli was most sensitive to antibiotics, whereas K. pneumoniae showed resistance rates higher than 70% for cephalosporins, carbapenems, and quinolones. All A. baumannii isolates were resistant to meropenem, and 80% of these isolates were resistant to amikacin. Conclusions. This study emphasizes the role of GNB in the microbiological profile of PJI among elderly patients at a tertiary hospital in a Brazilian centre. The present study portrays a worryingly higher rates of MDR-GNB, mainly to quinolones and cephalosporins resistance which have been the cornerstone of PJI antibiotic treatment. In addition, higher rates carbapenems and aminoglycosides resistance shows a threat to antibiotic treatment of PJI. More global studies need to be carried out to show a likely change in the microbial epidemiology of PJI


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 30 - 30
24 Nov 2023
van Hoogstraten S Samijo S Geurts J Arts C
Full Access

Aim. Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent bacterial adhesion and biofilm formation is essential. Antimicrobial coatings applicable to articulating implant surfaces are limited, due to the articulation mechanics inducing wear, coating degradation, and toxic particle release. Noble metals are known for their antimicrobial activity and high mechanical strength and could be a viable coating alternative for orthopaedic implants [1]. In this study, the potential of thin platinum-based metal alloy coatings was developed, characterized, and tested on cytotoxicity and antibacterial properties. Method. Three platinum-based metal alloy coatings were sputter-coated on medical-grade polished titanium discs. The coatings were characterized using optical topography and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Ion release was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Cytotoxicity was tested according to ISO10993-5 using mouse fibroblasts (cell lines L929 and 3T3). Antibacterial surface activity, bacterial adhesion, bacterial proliferation, and biofilm formation were tested with gram-positive Staphylococcus aureus ATCC 25923 and gram-negative Escherichia coli ATCC 25922. Colony forming unit (CFU) counts, live-dead fluorescence staining, and SEM-EDS images were used to assess antibacterial activity. Results. Three different platinum-based metal alloys consisting of platinum-iridium, platinum-copper, and platinum-zirconium. The coatings were found 80 nm thick, smooth (roughness average < 60 nm), and non-toxic. The platinum-copper coating showed a CFU reduction larger than one logarithm in adherent bacteria compared to uncoated titanium. The other coatings showed a smaller reduction. This data was confirmed by SEM and live-dead fluorescence images, and accordingly, ICP-OES measurements showed low levels of metal ion release from the coatings. Conclusions. The platinum-copper coating showed low anti-adhesion properties, even with extremely low metal ions released. These platinum-based metal alloy coatings cannot be classified as antimicrobial yet. Further optimization of the coating composition to induce a higher ion release based on the galvanic principle is required and copper looks most promising as the antimicrobial compound of choice. Acknowledgments. This publication is supported by the DARTBAC project (with project number NWA.1292.19.354) of the research program NWA-ORC which is (partly) financed by the Dutch Research Council (NWO); and the AMBITION project (with project number NSP20–1-302), co-funded by the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health to ReumaNederland


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 28 - 28
24 Nov 2023
De Vecchi E Balzano V Bottagisio M Gavioli L
Full Access

Aim. Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the antimicrobial properties of two multielement nanogranular coatings composed of Titanium-Silver and Copper and of Magnesium-Silver and Copper. Method. Ti-Ag-Cu and Mg-Ag-Cu NPs were deposited on circular cover glasses (VWR) by Supersonic Cluster Beam Deposition. Biofilm-producer strains of Staphylococcus aureus (methicillin susceptible and resistant), Staphylococcus epidermidis (methicillin susceptible and resistant), Escherichia coli (fully susceptible and producer of extended spectrum beta lactamases), and Pseudomonas aeruginosa (susceptible and multidrug-resistant) were selected. The abilities of the selected strains to adhere, colonize and produce biofilm on the discs coated with Ti-Ag-Cu or Mg-Ag-Cu NPs were compared to uncoated circular cover glasses which were used as growth control. Cytotoxicity was also evaluated in order to assess the biocompatibility of the newly synthesized NPs. Results. In comparison to uncoated controls, both coatings showed significant anti-adhesive properties against S. aureus, S. epidermidis, and E. coli. Reduction in adhesion to Mg-Ag-Cu coated discs was observed also for P. aeruginosa isolates, although differences vs uncoated controls did not reach statistical significance. Biofilm formation was reduced on discs coated with Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a milder effect on P. aeruginosa, probably due to its exceptional capability of attachment and matrix production. These results were confirmed by the evaluation of bacterial colonization on nanoparticles-coated discs by means of confocal laser scanning microscopy. A viability of 95.8% and 89.4% of cells cultured in the presence of Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls was observed, thus excluding cytotoxic effects on eukaryotic cells. Conclusions. The newly synthesized Ti-Ag-Cu and Mg-Ag-Cu coatings are able to limit bacterial adhesion colonization and biofilm production, thus highlighting the safe use of multi-element families of NPs as new strategies against bacterial attachment to the surface of biomedical implants. However, further studies addressing activity against P. aeruginosa and including a wide number of isolates are warranted


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs. We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 42 - 42
1 Sep 2012
Douglas Price A Cuestas N Cambiaggi G Vazquez M Caviglia H
Full Access

Objective. To assess the beneficial use of polypropylene mesh impregnated with vancomycin in an experimental model open fractures Gustilo IIIa in rabbits. Material and Method. We worked with 15 New Zeland White rabbits. All of them were carried out under general anaesthetic, a 5-cm incision longitudinal was made at the back of the right thigh. The femur was aproached and a fracture was performed with a shear, giving rise to a multifragment fracture. The wound remained open for 6 hours with the bone exposed, in a non-surgical ambient. Subsequently underwent surgical cleaning of the open fractures in two stages. The fracture was stabilized with an intramedular pin. The animals were sorted in 3 different therapeutic groups:. Group 1: (5 rabbits) without other treatment. Group 2: (5 rabbits) a polypropylene mesh was placed around the fracture. Group 3: (5 rabbits) a polypropylene mesh with vancomycin was placed around the fracture. The wound was closed with nylon stiches. Three weeks postoperative, the animals were intervened surgically under general anesthesia, after aseptic cure and placement of surgical fields, femoral bone biopsies, soft tissue and mesh were taken. The rabbits were sacrified. The samples were sent to pathology and bacteriology labs. Results. The bacteria isolated were as follows: Escherichia coli, Pasteurella multocida, Staphylococcus spp., Clostridium spp. Mamheinia spp. The Clostridium spp. is a common contaminant in the exposed fractures present in the environment. The Pasteurella mustocida is a microorganism present in the oral cavity of rabbits, as well as Escherichia coli is a germ present in the animal's digestive tract. Mannheimia spp. It is a beta-hemolytic organism, found in the nasal flora of these animals and their pathological role is not elucidated. Staphylococcus spp. is a germ that is found in the normal flora of the animals skin. Group 1 showed a relative risk for an infection. For Group 2 the relative risk was substantially greater than 1.4, while in Group 3, the relative risk was 0.6, significantly lower than the previous two groups. The results have shown a beneficial effect of the use of impregnated polypropylene mesh with vancomycin in this animal group. Conclusion. The use of polypropylene meshes with vancomycin could be useful in the treatment of muscle and ligamentary deficits in patients with open fractures Gustillo IIIa


Bone & Joint Research
Vol. 1, Issue 7 | Pages 145 - 151
1 Jul 2012
Sharma A Meyer F Hyvonen M Best SM Cameron RE Rushton N

Objectives. There is increasing application of bone morphogenetic proteins (BMPs) owing to their role in promoting fracture healing and bone fusion. However, an optimal delivery system has yet to be identified. The aims of this study were to synthesise bioactive BMP-2, combine it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide) (α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an Escherichia coli expression system and purified. In vitro bioactivity was confirmed using C2C12 cells and an alkaline phosphatase assay. The modified solution-evaporation method . was used to fabricate α-TCP/PLGA nanocomposite and this was characterised using X-ray diffraction and scanning electron microscopy. Functionalisation of α-TCP/PLGA nanocomposite by adsorption of BMP-2 was performed and release of BMP-2 was characterised using an enzyme-linked immunosorbent assay (ELISA). Results. Alkaline phosphatase activity of C2C12 cells was increased by the presence of all BMP-2/nanocomposite discs compared with the presence of a blank disc (p = 0.0022), and increased with increasing incubation concentrations of BMP-2, showing successful adsorption and bioactivity of BMP-2. A burst release profile was observed for BMP-2 from the nanocomposite. . Conclusions. Functionalisation of α-TCP/PLGA with BMP-2 produced osteoinduction and was dose-dependent. This material therefore has potential application as an osteoinductive agent in regenerative medicine


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 73 - 73
1 Dec 2021
Cho J Goswami K Sukhonthamarn K Parvizi J Arnold W
Full Access

Aim. The efficacy of various irrigation solutions in removing microbial contamination of a surgical wound and reducing the rate of subsequent surgical site infection (SSI), has been demonstrated extensively. However, it is not known if irrigation solutions have any activity against established biofilm. This issue is pertinent as successful management of patients with periprosthetic joint infection (PJI) includes the ability to remove biofilm established on the surface of implants and necrotic tissues. The purpose of this study was to evaluate the efficacy of various irrigation solutions in eradicating established biofilm, as opposed to planktonic bacteria, in a validated in vitro model. Method. Established biofilms of Staphylococcus aureus and Escherichia coli were exposed to different irrigation solutions that included Polymyxin 500,000U/L plus bacitracin 50,000U/L, Vancomycin 1g/L, Gentamicin 80mg/L, Normal saline 0.9%, off-the-shelf Betadine 0.3%, Chlorhexidine 0.05%, Benzalkonium 1.3g/L, Sodium hypochlorite 0.125%, and Povidone-iodine 0.5%. Each experiment was conducted in a 96-well microtiter plate with a peg lid and standardized per the MBEC assay manufacturer's protocol. Following 2 minutes of solution exposure to the irrigation solution, residual biofilms were recovered by sonication. Outcome measures for antibiofilm efficacy were residual colony forming units (CFU) and optical density (690nm). Experiments were conducted in 24 replicates and the observations recorded by two blinded observers. Statistical analysis involved t-tests with Bonferonni adjustment. Results. Povidone-iodine 0.5%, Betadine 0.3%, Benzalkonium 1.3g/L, and Sodium hypochlorite 0.125% were significantly more efficacious against S.aureus biofilm versus all other solutions (p<0.001). Against E.coli biofilm, Povidone-iodine-0.5%, Benzalkonium-1.3g/L and Sodium hypochlorite-0.125% were also most effective compared to other irrigation solutions (p<0.001). Polymyxin-bacitracin, Gentamicin, Vancomycin, and Saline solutions had minimal activity against both E.coli and S.aureus biofilms (p<0.001). Similar trends were observed using both experimental endpoints (CFU and Turbidity) and both investigators (interrater reliability; r=0.99). Conclusion. This in vitro study observed that topical antibiotic solutions do not have any activity against established biofilms. Irrigations solutions containing adequate amount of povidone-iodine, betadine, sodium hypochlorite, and benzalkonium appear to have activity against established biofilm by gram positive and gram negative organisms. The use of these irrigation solutions may need to be considered in patients with established PJI


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 417 - 420
1 Mar 2007
Bielecki TM Gazdzik TS Arendt J Szczepanski T Kròl W Wielkoszynski T

Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel. We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains. Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and antimicrobial properties of platelet-rich gel can improve the treatment of infected delayed healing and nonunion