Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 302 - 302
1 Jul 2014
Lam C Assinck P Liu J Tetzlaff W Oxland T
Full Access

Summary Statement. The mechanism of spinal cord injury varies across the human population and this may be important for the development of effective therapies. Therefore, detailed understanding of how variables such as impact velocity and depth affect cord tissue damage is important. Introduction. Studies have shown an independent effect of impact velocity and depth on injury severity, thereby suggesting importance of the interaction between the two for spinal cord injury. This work examines both the individual and interactive effects of impact velocity and impact depth on demyelination, tissue sparing, and behavioural outcomes in the rat cervical spinal cord. It also aims to understand the contribution of the energy applied during impact, not only the impact factors. Decoupling the effects of these two impact parameters will help to describe the injury mechanism. Maximum principal strain has also been shown to be useful as a predictor for neural tissue damage in vivo and in finite element (FE) models. A better understanding of this relationship with experimental results may help to elucidate the mechanics of spinal cord injury. Methods. In this study, 54 male Sprague-Dawley rats were given a contusion spinal cord injury at impact speeds of 8 mm/s, 80 mm/s, or 800 mm/s with depths of 0.9 mm or 1.5 mm. Animals recovered for 7 days followed by behavioural assessment and examination of the spinal cord tissue for demyelination and tissue sparing at 1 mm intervals, ±3 mm rostrocaudally to the epicentre. In parallel, a previously developed finite element model of the rat spinal cord was used to examine the resulting maximum principal strains in the spinal cord for correlations with histological and mechanical impact data. Results and discussion. Impact depth was a consistent factor in predicting axonal damage, tissue sparing, and the resulting behavioural deficit. Increased impact velocity resulted in significantly higher impact energies and measureable tissue damage at the 1.5 mm impact depth, but not at the 0.9 mm impact depth and is best displayed by the percentage of axon damage at the injury epicentre. Linear correlation analysis with FEA strain showed significant (p≪0.001) correlations with axonal damage in the ventral (R2=0.86) and lateral (R2=0.74) regions of the spinal cord and with white matter (R2=0.90) and grey matter (R2=0.76) sparing. Discussion and Conclusion. The difference in injury severity to velocity at different impact depths identifies the existence of threshold interactions between the two impact factors. Beyond this point incremental increases in either velocity or depth are more likely to result in significantly increased impact energy and thus tissue damage and functional impairment. The relationship between the impact depth and velocity of injury demonstrated a more rate sensitive response to spinal cord tissue damage at the deep (1.5 mm) impact depth than at the shallow (0.9 mm) impact depth. Impact velocity also became quickly less significant than impact depth in determining tissue damage further from the epicentre. Furthermore, the results shown by this work extend the research identifying significant correlations between maximum principal strain and neurological tissue damage


Abstract

Objectives

To evaluate the safety and efficacy of vertebroplasty with short segmented cement augmented pedicle screws fixation for severe osteoporotic vertebral compression fractures (OVCF) with posterior/anterior wall fractured patients.

Methods

A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 38 - 38
1 Dec 2022
Tedesco G Evangelisti G Fusco E Ghermandi R Girolami M Pipola V Tedesco E Romoli S Fontanella M Brodano GB Gasbarrini A
Full Access

Neurological complications in oncological and degenerative spine surgery represent one of the most feared risks of these procedures. Multimodal intraoperative neurophysiological monitoring (IONM) mainly uses methods to detect changes in the patient's neurological status in a timely manner, thus allowing actions that can reverse neurological deficits before they become irreversible. The utopian goal of spinal surgery is the absence of neurological complications while the realistic goal is to optimize the responses to changes in neuromonitoring such that permanent deficits occur less frequently as possible. In 2014, an algorithm was proposed in response to changes in neuromonitoring for deformity corrections in spinal surgery. There are several studies that confirm the positive impact that a checklist has on care. The proposed checklist has been specifically designed for interventions on stable columns which is significantly different from oncological and degenerative surgery. The goal of this project is to provide a checklist for oncological and degenerative spine surgery to improve the quality of care and minimize the risk of neurological deficit through the optimization of clinical decision-making during periods of intraoperative stress or uncertainty. After a literature review on risk factors and recommendations for responding to IONM changes, 3 surveys were administered to 8 surgeons with experience in oncological and degenerative spine surgery from 5 hospitals in Italy. In addition, anesthesiologists, intraoperative neuro-monitoring teams, operating room nurses participated. The members participated in the optimization and final drafting of the checklist. The authors reassessed and modified the checklist during 3 meetings over 9 months, including a clinical validation period using a modified Delphi process. A checklist containing 28 items to be considered in responding to the changes of the IONM was created. The checklist was submitted for inclusion in the new recommendations of the Italian Society of Clinical Neurophysiology (SINC) for intraoperative neurophysiological monitoring. The final checklist represents the consensus of a group of experienced spine surgeons. The checklist includes the most important and high-performance items to consider when responding to IONM changes in patients with an unstable spine. The implementation of this checklist has the potential to improve surgical outcomes and patient safety in the field of spinal surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 135 - 135
11 Apr 2023
du Moulin W Bourne M Diamond L Konrath J Vertullo C Lloyd D Saxby D
Full Access

Following anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft measures such as length, cross-sectional area, and volume may not fully describe the effects of tendon harvest on muscle morphology as these discrete measures cannot characterize three-dimensional muscle shape. This study aimed to determine between-limb ST shape similarity and regional morphology in individuals with a unilateral history of ACLR using a ST graft, and healthy controls. A secondary analysis of magnetic resonance imaging was undertaken from 18 individuals with unilateral history of ST ACLR and 18 healthy controls. ST muscles were manually segmented, and shape similarity were assessed between limbs and groups using Jaccard index (0-1) and Hausdorff distance (mm). ST length (cm), peak cross-sectional area (CSA) (cm. 2. ), and volume (cm. 3. ) was compared between surgically reconstructed and uninjured contralateral limbs, and between the left and right limbs of control participants with no history of injury. Cohen's d was reported as a measure of effect size. Compared to healthy controls, the ACLR group had significantly (p<0.001, d= −2.33) lower bilateral ST shape similarity. Furthermore, the deviation in muscle shape was significantly (p<0.001, d= 2.12) greater in the ACLR group. Within the ACLR group, maximum Hausdorff distance indicated ST from the ACLR limb deviated (23.1±8.68 mm) from the shape of the healthy contralateral ST, this was observed particularly within the distal region of the muscle. Compared to the uninjured contralateral limb and healthy controls, deficits in peak cross-sectional area and volume in ACLR group were largest in proximal (p<0.001, d= −2.52 to −1.28) and middle (p<0.001, d= −1.81 to −1.04) regions. Findings highlight morphological features in distal ST not identified by traditional discrete morphology measures. ST shape was most different in the distal region of the muscle, despite deficits in CSA and volume being most pronounced in proximal and middle regions. ST shape following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 141 - 141
11 Apr 2023
du Moulin W Bourne M Diamond L Konrath J Vertullo C Lloyd D Saxby D
Full Access

Anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft, with or without gracilis (GR), results in donor muscle atrophy and varied tendon regeneration. The effects of harvesting these muscles on muscle moment arm and torque generating capacity have not been well described. This study aimed to determine between-limb differences (ACLR vs uninjured contralateral) in muscle moment arm and torque generating capacity across a full range of hip and knee motions. A secondary analysis of magnetic resonance imaging was undertaken from 8 individuals with unilateral history of ST-GR ACLR with complete ST tendon regeneration. All hamstring muscles and ST tendons were manually segmented. Muscle length (cm), peak cross-sectional area (CSA) (cm. 2. ), and volume (cm. 3. ) were measured in ACLR and uninjured contralateral limbs. OpenSim was used to simulate and evaluate the mechanical consequences of changes in normalised moment arm (m) and torque generating capacity (N.m) between ACLR and uninjured contralateral limbs. Compared to uninjured contralateral limbs, regenerated ST tendon re-insertion varied proximal (+) (mean = 0.66cm, maximum = 3.44cm, minimum = −2.17cm, range = 5.61cm) and posterior (+) (mean = 0.38cm maximum = 0.71cm, minimum = 0.02cm, range = 0.69cm) locations relative to native anatomical positions. Compared to uninjured contralateral limbs, change in ST tendon insertion point in ACLR limbs resulted in 2.5% loss in peak moment arm and a 3.4% loss in peak torque generating capacity. Accounting for changes to both max isometric force and ST moment arm, the ST had a 14.8% loss in peak torque generating capacity. There are significant deficits in ST muscle morphology and insertion points following ST-GR ACLR. The ST atrophy and insertion point migration following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 101 - 101
2 Jan 2024
Firth A Lee K van Duren B Berber R Matar H Bloch B
Full Access

Stiffness is reported in up to 16% of patients after total knee replacement (TKR). 1. Treatment of stiffness after TKR remains a challenge. Manipulation under anaesthesia (MUA) accounts for between 6%-36% of readmissions following TKR. 2,3. The outcomes of MUA remain variable/unpredictable. Post-operative CPM is used as an adjuvant to MUA, potentially offering improved ROM, however, remains the subject of debate. We report a retrospective study comparing MUA with and without post-operative CPM. In our institution patients undergoing MUA to receive CPM post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period MUA procedures were undertaken without CPM. Two cohorts were included: 1) MUA + post-operative CPM 2) Daycase MUA. Patients’ demographics, pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded. Between 2017-2022 126 patients underwent MUA and were admitted for CPM and 42 had daycase MUA. The median Age was 66.5 and 64% were female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) vs. 68.5. o. (19.0. o. ), ROM at MUA was 95.5. o. (SD:20.7. o. ) vs 108.3. o. (SD:14.1. o. ) [p< 0.01], and at final follow-up 87.4. o. (SD:21.9. o. ) vs. 92.1. o. (SD:18.2. o. ) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92%(SD:17) and 85%(SD:14)[p=0.03] for daycase and CPM groups respectively. There was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. The CPM group lost a greater ROM after MUA (15% vs. 8%). We conclude that post-operative CPM does not improve ROM achieved after MUA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 19 - 19
17 Nov 2023
Lee K van Duren B Berber R Matar H Bloch B
Full Access

Abstract. Objectives. Stiffness is reported in 4%–16% of patients after having undergone total knee replacement (TKR). Limitation to range of motion (ROM) can limit a patient's ability to undertake activities of daily living with a knee flexion of 83. o. , 93. o. , and 106. o. required to walk up stairs, sit on a chair, and tie one's shoelaces respectively. The treatment of stiffness after TKR remains a challenge. Many treatment options are described for treating the stiff TKR. In addition to physiotherapy the most employed of these is manipulation under anaesthesia (MUA). MUA accounts for up to 36% of readmissions following TKR. Though frequently undertaken the outcomes of MUA remain variable and unpredictable. CPM as an adjuvant therapy to MUA remains the subject of debate. Combining the use of CPM after MUA in theory adds the potential benefits of CPM to those of MUA potentially offering greater improvements in ROM. This paper reports a retrospective study comparing patients who underwent MUA with and without post-operative CPM. Methods. Standard practice in our institution is for patients undergoing MUA for stiff TKR to receive CPM for between 12–24hours post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period several MUA procedures were undertaken without subsequent inpatient CPM. We retrospectively identified two cohorts of patients treated for stiff TKR: group 1) MUA + post-operative CPM 2) Daycase MUA. All patients had undergone initial physiotherapy to try and improve their ROM prior to proceeding to MUA. In addition to patients’ demographics pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded for each patient. Results. In total 168 patients who had undergone MUA between 2017–2022 were identified with a median Age of 66.5 years and 64% female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. 42 had daycase MUA without CPM and the remaining 126 were admitted for post-operative CPM. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) and 68.5. o. (19.0. o. ) for the daycase and CPM groups respectively. The mean ROM recorded at MUA was 95.5. o. (SD:20.7. o. ) and 108.3. o. (SD:14.1. o. ) [p<0.01] and at final follow-up was 87.4o (SD:21.9o) and 92.1o (SD:18.2o) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92% (SD:17%) and 85% (SD:14%) [p=0.03] for daycase and CPM groups respectively. Conclusion. Overall, there was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. Analysis of the percentage ROM gained at MUA maintained at follow up showed that most patients regressed from ROM achieved at MUA in both groups with those in the CPM only maintaining 85% as opposed to 92% in the daycase patients. It is our observation that post-operative CPM does not improve ROM achieved after MUA as compared to MUA alone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Full Access

Barriers to successful return to previous level of activity following Anterior Cruciate Ligament Recon-struction (ACLR) are multifactorial and recent research suggests that athletic performance deficits persist after completion of the rehabilitation course in a large percentage of patients. Thirty soccer athletes (26.9 ± 5.7 years old, male) with ACL injury were surgically treated with all-inside technique and semitendi-nosus tendon autograft. At 2 years from surgery, they were called back for clinical examination, self-reported psychological scores, and biomechanical outcomes (balance, strength, agility and velocity, and symmetry). Nonparametric statistical tests have been adopted for group comparisons in terms of age, concomitant presence of meniscus tear, injury on dominant leg, presence of knee laxity, presence of varus/valgus, body sides, and return to different levels of sports. Athletes with lower psychological scores showed lesser values in terms of power, resistance and neuromuscular activity as compared to the ones with good psychological scores that showed, instead, better self-reported outcomes (TLKS, CRSQ) and low fear of reinjury (TSK). In the athletes who had a functional deficit in at least one subtest, a safe return to sports could not have been recommended. Our findings confirmed that demographics, physical function, and psychological factors were related to playing the preinjury level sport at mean 2 years after surgery, sup-porting the notion that returning to sport after surgery is multifactorial. A strict qualitative and quantitative assessment of athletes’ status should be performed at different follow-ups after surgery to guarantee a safe and controlled RTP


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 71 - 71
11 Apr 2023
Pelegrinelli A Kowalski E Ryan N Dervin G Moura F Lamontagne M
Full Access

The study compared thigh-shank and shank-foot coordination during gait before and after total knee arthroplasty (TKA) with controls (CTRL). Twenty-seven patients (male=15/female=12; age=63.2±6.9 years) were evaluated one month prior to and twelve months after surgery, and compared to 27 controls (male=14/female=13; age=62.2±4.3). The participants were outfitted with a full-body marker set. Gait speed (normalized by leg length) was calculated. The time series of the thigh, shank, and foot orientation in relation to the laboratory coordinate system were extracted. The coordination between the thigh-shank and shank-foot in the sagittal plane were calculated using a vector coding technique. The coupling angles were categorized into four coordination patterns. The stance phase was divided into thirds: early, mid, and late stance. The frequency of each pattern and gait speed were compared using a one-way ANOVA with a post-hoc Bonferroni correction. Walking speed and shank-foot coordination showed no differences between the groups. The thigh-shank showed differences. The pre-TKA group showed a more in-phase pattern compared to the CTRL group during early-stance. During mid-stance, the pre- and post-TKA presented a more in-phase pattern compared to the CTRL group. Regarding shank-foot coordination, the groups presented an in-phase and shank pattern, with more shank phase during mid-stance and more in-phase during late-stance. The pre-TKA group showed greater differences than the post-TKA compared to the controls. The more in-phase pattern in the pre- and post-TKA groups could relate to a reduced capacity for the thigh that leads the movement. During mid-stance in normal gait, the knee is extending, where the thigh and shank movements are in opposite directions. The in-phase results in the TKA groups indicate knee stiffness during the stance phase, which may relate to a muscular deficit or a gait strategy to reduce joint stress


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 23 - 23
11 Apr 2023
Keen R Liu J Williams A Wood S
Full Access

X-Linked Hypophosphataemia (XLH) is a rare, progressive, hereditary phosphate-wasting disorder characterised by excessive activity of fibroblast growth factor 23. The International XLH Registry was established to provide information on the natural history of XLH and impact of treatment on patient outcomes. The cross-sectional orthopaedic data presented are from the first interim analysis. The XLH Registry (NCT03193476) was initiated in August 2017, aims to recruit 1,200 children and adults with XLH, and will run for 10 years. At the time of analysis (Last Patient In: 30/11/2020; Database Lock: 29/03/2021) 579 subjects diagnosed with XLH were enrolled from 81 hospital sites in 16 countries (360 (62.2%) children, 217 (37.5%) adults, and 2 subjects of unknown age). Of subjects with retrospective clinical data available, skeletal deficits were the most frequently self-reported clinical problems for children (223/239, 93.3%) and adults (79/110, 71.8%). Retrospective fracture data were available for 183 subjects (72 children, 111 adults); 50 had a fracture (9 children, 41 adults). In children, fractures tended to occur in tibia/fibula and/or wrist; only adults reported large bone fractures. Joint conditions were noted for 46 subjects (6 children, 40 adults). For adults reporting osteoarthritis, knees (60%), hips (42.5%), and shoulders (22.5%) were the most frequently affected joints. Retrospective orthopaedic surgery data were collected for 151 subjects (52 children, 99 adults). Osteotomy was the most frequent surgery reported (n=108); joint replacements were recorded for adults only. This is the largest set of orthopaedic data from XLH subjects collected to date. Longitudinal information collected during the 10-year Registry duration will generate real-world evidence which will help to inform clinical practice. Authors acknowledge the contribution of all International XLH Registry Steering Committee members


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 27 - 27
17 Apr 2023
Nand R Sunderamoorthy D
Full Access

An isolated avulsion fracture of the peroneus longus tendon is seldom seen and potentially can go undiagnosed using basic imaging methods during an initial emergency visit. If not managed appropriately it can lead to chronic pain, a reduced range of motions and eventually affect mobility. This article brings to light the effectiveness of managing such injuries conservatively. A 55 year old postman presented to clinic with pain over the instep of his right foot for 2 months with no history of trauma. Clinically the pain was confined to the right first metatarsophalangeal joint with occasional radiation to the calf. X-ray films did not detect any obvious bony injury. MR imaging revealed an ununited avulsion fracture of the base of the 1st metatarsal. The patient was subsequently injected with a mix of steroid and local anesthetic injections at the painful nonunion site under fluoroscopic guidance. Post procedure there was no neurovascular deficit. The patient was reviewed at three months and his pain score and functional outcome improved significantly. Moreover following our intervention, the Manchester Oxford Foot Questionnaire reduced from 33 to 0. At the one year follow up he remained asymptomatic and was discharged. The peroneus longus tendon plays a role in eversion and planter flexion of foot along with providing stabilization to arches of foot. The pattern of injury to this tendon is based on two factors one is the mechanism of insult, if injured, and second is the variation in the insertion pattern of peroneus longus tendon itself. There is no gold standard treatments by which these injuries can be managed. If conservative management fails we must also consider surgery which involves percutaneous fixation, or excision of the non-healed fracture fragment and arthrodesis. To conclude isolated avulsion fractures of peroneus longus tendon are rare injuries and it is important to raise awareness of this injury and the diagnostic and management challenges faced. In this case conservative management was a success in treating this injury however it is important to take factors such as patient selection, patient autonomy and clinical judgement into account before making the final decision


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 72 - 72
2 Jan 2024
Loiselle A
Full Access

During aging, tendons demonstrate substantial disruptions in homeostasis, leading to impairments in structure-function. Impaired tendon function contributes to substantial declines quality of life during aging. Aged tendons are more likely to undergo spontaneous rupture, and the healing response following injury is impaired in aged tendons. Thus, there is a need to develop strategies to maintain tendon homeostasis and healing capacity through the lifespan. Tendon cell density sharply declines by ∼12 months of age in mice, and this low cell density is retained in geriatric tendons. Our data suggests that this decline in cellularity initiates a degenerative cascade due to insufficient production of the extracellular matrix (ECM) components needed to maintain tendon homeostasis. Thus, preventing this decline in tendon cellularity has great potential for maintaining tendon health. Single cell RNA sequencing analysis identifies two changes in the aged tendon cell environment. First, aged tendons primarily lose tenocytes that are associated with ECM biosynthesis functions. Second, the tenocytes that remain in aged tendons have disruptions in proteostasis and an increased pro-inflammatory phenotype, with these changes collectively termed ‘programmatic skewing'. To determine which of these changes drives homeostatic disruption, we developed a model of tenocyte depletion in young animals. This model decreases tendon cellularity to that of an aged tendon, including decreased biosynthetic tenocyte function, while age-related programmatic skewing is absent. Loss of biosynthetic tenocyte function in young tendons was sufficient to induce homeostatic disruption comparable to natural aging, including deficits in ECM organization, composition, and material quality, suggesting loss biosynthetic tenocytes as an initiator of tendon degeneration. In contrast, our data suggest that programmatic skewing underpins impaired healing in aged tendons. Indeed, despite similar declines in the tenocyte environment, middle-aged and young-depleted tendons mount a physiological healing response characterized by robust ECM synthesis and remodeling, while aged tendons heal with insufficient ECM


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 83 - 83
17 Apr 2023
Tawy G McNicholas M Biant L
Full Access

Total knee arthroplasty (TKA) aims to alleviate pain and restore joint biomechanics to an equivalent degree to age-matched peers. Zimmer Biomet's Nexgen TKA was the most common implant in the UK between 2003 and 2016. This study compared the biomechanical outcomes of the Nexgen implant against a cohort of healthy older adults to determine whether knee biomechanics is restored post-TKA. Patients with a primary Nexgen TKA and healthy adults >55 years old with no musculoskeletal deficits or diagnosis of arthritis were recruited locally. Eligible participants attended one research appointment. Bilateral knee range of motion (RoM) was assessed with a goniometer. A motorised arthrometer (GENOUROB) was then used to quantify the anterior-posterior laxity of each knee. Finally, gait patterns were analysed on a treadmill. An 8-camera Vicon motion capture system generated the biomechanical model. Preliminary statistical analyses were performed in SPSS (α = 0.05; required sample size for ongoing study: n=21 per group). The patient cohort (n=21) was older and had a greater BMI than the comparative group (n=13). Patients also had significantly poorer RoM than healthy older adults. However, there were no inter-group differences in knee laxity, walking speed or cadence. Gait kinematics were comparable in the sagittal plane during stance phase. Peak knee flexion during swing phase was lower in the patient group, however (49.0° vs 41.1°). Preliminary results suggest that knee laxity and some spatiotemporal and kinematic parameters of gait are restored in Nexgen TKA patients. While knee RoM remains significantly poorer in the patient cohort, an average RoM of >110° was achieved. This suggests the implant provides sufficient RoM for most activities of daily living. Further improvements to knee kinematics may necessitate additional rehabilitation. Future recruitment drives will concentrate on adults over the age of 70 for improved inter-group comparability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits. ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat. Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons. These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 70 - 70
2 Jan 2024
Ely E Collins K Lenz K Paradi S Liedtke W Chen Y Guilak F
Full Access

Osteoarthritis (OA) is the leading cause of pain and disability worldwide and is characterized by the degenerative changes of articular cartilage. Joint loading is required for cartilage maintenance; however, hyper-physiologic loading is a risk factor for OA. Mechanosensitive ion channels Piezo1 and Piezo2 synergistically transduce hyper-physiologic compression of chondrocytes, leading to chondrocyte death and onset of OA. This injury response is inhibited by Piezo channel loss of function, however the mechanistic role of Piezo channels in vivo is unknown. We examined the hypothesis that deletion of Piezo in chondrocytes will protect mice from joint damage and pain-related behaviors following a surgical destabilization of the medial meniscus (DMM), investigating a key mechanistic and mechanobiological role of these channels in the pathogenesis of OA. Aggrecan-Cre Piezo1 and Piezo1/2 knockout mice ((Agc)1-CRE. ERT2. ;Piezo1. fl/fl. Piezo2. fl/fl. ) were generated and given a 5-day Tamoxifen regimen at 12-weeks of age (n=6–12/group/sex). Cre-negative mice served as controls. At 16-weeks, mice received DMM surgery on the left knee. 12-weeks following DMM prior to sacrifice, activity and hyperalgesia were measured using spontaneous running wheels and a small animal algometer. Structural changes in bone, cartilage, and synovium were characterized using microCT, histology, and Modified Mankin Score criteria. Knockout of Piezo1/2 channels was chondroprotective in both sexes following DMM surgery as demonstrated by reduced Modified Mankin Score compared to control animals. Piezo1 KO was chondroprotective in only female mice, indicating a sexually dimorphic response. Piezo1 and Piezo1/2 KO was protective against pain in male mice, while females displayed no differences compared to controls. No changes were observed in bone morphology. Chondrocyte-specific Piezo1/2 knockout protects the knee joint from structural damage, hyperalgesia and functional deficits in a surgical model of PTOA in male and female mice, illustrating the importance of Piezo channels in response to injury in vivo. Future work aims to interrogate potential sexually dimorphic responses to cartilage damage and investigating Piezo2 KO mice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 76 - 76
4 Apr 2023
LU X BAI S LIN Y YAN L LI L WANG M JIANG Z WANG H YANG B YANG Z WANG Y FENG L JIANG X PONOMAREV E LEE W LIN S KO H LI G
Full Access

Based on Ilizarov's law of tension-stress principle, distraction histogenesis technique has been widely applied in orthopaedic surgery for decades. Derived from this technique, cranial bone transport technique was mainly used for treating cranial deformities and calvarial defects. Recent studies reported that there are dense short vascular connections between skull marrow and meninges for immune cells trafficking, highlighting complex and tight association between skull and brain. Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia without effective therapy. Meningeal lymphatics have been recognized as an important mediator in neurological diseases. The augmentation of meningeal lymphatic drainage might be a promising therapeutic target for AD. Our proof-of-concept study has indicated that cranial bone transport can promote ischemic stroke recovery via modulating meningeal lymphatic drainage function, providing a rationale for treating AD using cranial bone maneuver (CBM). This study aims to investigate the effects of CBM on AD and to further explore the potential mechanisms. Transgenic 5xFAD mice model was used in this study. After osteotomy, a bone flap was used to perform CBM without damaging the dura. Open filed test, novel object recognition test and Barn's maze test were used to evaluate neurological functions of 5xFAD mice after CBM treatment. Congo red and immunofluorescence staining were used to evaluate amyloid depositions and Aβ plaques in different brain regions. Lymphangiogenesis and the level of VEGF-C were examined after CBM treatment. OVA-A647 was intra-cisterna-magna injected to evaluate meningeal lymphatic drainage function after CBM treatment. CBM significantly improved memory functions and reduced amyloid depositions and Aβ plaques in the hippocampus of 5xFAD mice. A significant increase of meningeal lymphatic vessels in superior sagittal sinus and transverse sinus, and the upregulation of VEGF-C in meninges were observed in 5xFAD mice treated with CBM. Moreover, CBM remarkably enhanced meningeal lymphatic drainage function in 5xFAD mice (n=5-16 mice/group for all studies). CBM may promote meningeal lymphangiogenesis and lymphatic drainage function through VEGF-C-VEGFR3 pathway, and further reduce amyloid depositions and Aβ plaques and alleviate memory deficits in AD


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 68 - 68
1 Nov 2021
Monahan G Schiavi J Vaughan T
Full Access

Introduction and Objective. Individuals with type 2 diabetes (T2D) have a 3-fold increased risk of bone fracture compared to non-diabetics, with the majority of fractures occurring in the hip, vertebrae and wrists. However, unlike osteoporosis, in T2D, increased bone fragility is generally not accompanied by a reduction in bone mineral density (BMD). This implies that T2D is explained by poorer bone quality, whereby the intrinsic properties of the bone tissue itself are impaired, rather than bone mass. Yet, the mechanics remain unclear. The objective of this study is to (1) assess the fracture mechanics of bone at the structural and tissue level; and (2) investigate for changes in the composition of bone tissue along with measuring total fluorescent advanced glycation end products (fAGEs) from the skin, as T2D progresses with age in Zucker diabetic fatty (ZDF (fa/fa)) and lean Zucker (ZL (fa/+)) rats. Materials and Methods. Right ulnae and skin sections were harvested from ZDF (fa/fa) (T2D) and ZL (fa/+) (Control) rats at 12 and 46 weeks (wks) of age (n = 8, per strain and age) and frozen. Right ulnae were thawed for 12 hrs before micro-CT (μCT) scanning to assess the microstructure and measure BMD. After scanning, ulnae were loaded until failure via three-point bending. Fourier transform-infrared microspectroscopy (FTIR) was used to measure various bone mineral- and collagen-related parameters such as, mineral-to-matrix ratio and nonenzymatic cross-link ratio. Finally, fAGEs were measured from skin sections using fluorescence spectrometry and an absorbance assay, reported in units of ng quinine/ mg collagen. Results. At 12 and 46 wks bone size was significantly smaller in length (p < 0.01), cortical area (p < 0.001) and cross-sectional moment of inertia (p < 0.001) in T2D rats compared to age-matched controls. A slight reduction in BMD was observed in T2D rats compared to controls at both ages, however, this was not significant. Structural properties of T2D bone were significantly altered at 12 and 46 wks, with bending rigidity increasing approximately 2.5-fold and 1.5-fold in control and T2D rats with age, respectively (p < 0.0001). Similarly, yield and ultimate moment significantly reduced in T2D rats with age in comparison to controls (p < 0.0001). Energy absorbed to failure was significantly reduced in T2D rats at 46 weeks of age compared to controls (p < 0.01). The amount of energy absorbed to failure increased approximately 1.4-fold from 12 to 46 wks in control rats, however, in T2D rats a reduction was seen with age, although not significant. At 12 wks, there was no significant deficits in tissue material properties, whereas, at 46 wks a significant reduction in yield stress, yield strain and ultimate stress was observed for T2D rats in comparison to controls (p < 0.05). Conclusions. These findings show that longitudinal growth is impaired as early as 12 wks of age and by 46 wks bone size is significantly reduced in T2D rats compared to controls. The reduction in T2D structural properties is likely attributed to the bone geometry deficits. At 12 wks of age, the tissue material properties are not altered in T2D bone versus controls. However, at 46 wks, bone strength is reduced in T2D, leading to the conclusion that tissue properties are altered as the disease progresses


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 32 - 32
1 Dec 2022
Ricci A Boriani L Giannone S Aiello V Marvasi G Toccaceli L Rame P Moscato G D'Andrea A De Benedetto S Frugiuele J Vommaro F Gasbarrini A
Full Access

Scoliosis correction surgery is one of the longest and most complex procedures of all orthopedic surgery. The complication rate is therefore not negligible and is particularly high when the surgery is performed in patients with neuromuscular or connective tissue disease or complex genetic syndromes. In fact, these patients have various comorbidities and organ deficits (respiratory capacity, swallowing / nutrition, heart function, etc.), which can compromise the outcome of the surgery. In these cases, an accurate assessment and preparation for surgery is essential, also making use of external consultants. To make this phase simpler, more effective and homogeneous, a multidisciplinary path of peri-operative optimization is being developed in our Institute, which also includes the possibility of post-operative hospitalization for rehabilitation and recovery. The goal is to improve the basic functional status as much as possible, in order to ensure faster functional recovery and minimize the incidence of peri-operative complications, to be assessed by clinical audit. The path model and the preliminary results on the first patients managed according to the new modality are presented here. The multidisciplinary path involves the execution of the following assessments / interventions: • Pediatric visit with particular attention to the state of the upper airways and the evaluation of chronic or frequent inflammatory states • Cardiological Consultation with Echocardiogram. • Respiratory Function Tests, Blood Gas Analysis and Pneumological Consultation to evaluate indications for preoperative respiratory physiotherapy cycles, Non-Invasive Ventilation (NIV) cycles, Cough Machine. Possible Polysomnography. • Nutrition consultancy to assess the need for nutritional preparation in order to improve muscle trophism. • Consultation of the speech therapist in cases of dysphagia for liquids and / or solids. • Electroencephalogram and Neurological Consultation in epileptic patients. • Physiological consultation in patients already being treated with a cough machine and / or NIV. • Availability of postoperative hospitalization in the rehabilitation center (with skills in respiratory and neurological rehabilitation) for the most complex cases. When all the appropriate assessments have been completed, the anesthetist in charge at our Institute examines the clinical documentation and establishes whether the path can be considered complete and whether the patient is ready for surgery. At the end of the surgery, the patient is admitted to the Post-operative Intensive Care Unit of the Institute. If necessary, a new program of postoperative rehabilitation (respiratory, neuromotor, etc.) is programmed in a specialist reference center. To date, two patients have been referred to the preoperative optimization path: one with Ullrich Congenital Muscular Dystrophy, and one with 6q25 Microdeletion Syndrome. In the first case, the surgery was performed successfully, and the patient was discharged at home. In the second case, after completing the optimization process, the surgery was postponed due to the finding of urethral malformation with the impossibility of bladder catheterization, which made it necessary to proceed with urological surgery first. The preliminary case series presented here is still very limited and does not allow evaluations on the impact of the program on the clinical practice and the complication rate. However, these first experiences made it possible to demonstrate the feasibility of this complex multidisciplinary path in which a network of specialists takes part


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 136 - 136
1 Nov 2021
Huard J
Full Access

Geriatric syndromes could lead individuals to exhibit significant mobility and psychological deficits resulting in significant healthcare costs. Thus, identifying strategies to delay aging, or prevent progressive loss of tissue homeostasis could dramatically restore the function and independence of millions of elderly patients and significantly improve quality of life. One of the fundamental properties of aging is the accumulation of senescent cells and senescence associated secretory phenotypes (SASPs) that needs to be treated in wide range of therapeutics including orthobiologics. Senolytic compounds selectively target and kill senescent cells and inhibit anti-apoptotic pathways that are upregulated in senescent cells thereby inducing apoptotic cell death and abrogating systemic SASP factors. We have also shown that blocking fibrosis with Losartan (TGF-β1 blocker) can improve musculoskeletal healing and cartilage repair by reducing the amount of fibrosis. Thus, we hypothesize that administration of anti-fibrotic agents will enhance the beneficial effects of orthobiologics. The safety and efficacy of several senolytic and anti-fibrotic agents to delay age-related dysfunction and improve the function of orthobiologics have been demonstrated in a variety of animal models (in vivo). Overall, our innovative approaches target senescent cells (inflammation) and TGF-β1 (fibrosis) to enhance the clinical efficacy and use of orthobiologics for musculoskeletal repair. We will also discuss ongoing active clinical trials on orthobiologics to aiming at evaluating the safety and efficacy of senolytic agent (Fisetin) and anti-fibrotic agent (Losartan), used independently or in combination, to enhance the beneficial effects of orthobiologics for patients afflicted with musculoskeletal diseases and conditions