Advertisement for orthosearch.org.uk
Results 1 - 20 of 1389
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 48 - 48
2 Jan 2024
Faydaver M Russo V Di Giacinto O El Khatib M Rigamonti M Rosati G Raspa M Scavizzi F Santos H Mauro A Barboni B
Full Access

Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology. Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their histological and immunohistochemical properties to obtain a total histological score (TSH) that was then correlated to the movement data. DVC cages showed the capacity to distinguish activity patterns in groups from the two different conditions. The data collected showed that the mice with access to the mouse wheel had a higher activity as compared to the blocked wheel group, which suggests that the extra movement during tendon healing improved motion ability. The histological results showed a clear difference between different analyzed groups. The bilateral free wheel group showed the best histological recovery, offering the highest TSH score, thus confirming the results of the DVC cages and the correlation between movement activity and structural recovery. Data obtained showed a correlation between TSH and the DVC cages, displaying structural and movement differences between the tested groups. This successful correlation allows the usage of DVC type cages as a non-invasive method to predict tissue regeneration and recovery. Acknowledgements: This research is part of the P4FIT project ESR13, funded by the H2020-ITN-EJD MSCA grant agreement No.955685


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 83 - 83
2 Jan 2024
Segarra-Queralt M Galofré M Tio L Monfort J Monllau J Piella G Noailly J
Full Access

Knee osteoarthritis (KOA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in KOA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n=51) with Kellgren-Lawrence grade 2–3 KOA through Support Vector Machine (SVM) and a regulation network model (RNM). Clinical descriptors (i.e., pain catastrophism (CA); depression (DE); functionality (FU); joint pain (JP); rigidity (RI); sensitization (SE); synovitis (SY)) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are KOA descriptors, synovial fluid (SL) proteomic measurements (n=25), and transcription factors (TF) activation obtained from RNM [2] stimulated with the SL measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through AUC-ROC analysis. The best classifier with clinical data is CA (AUC = 0.9), highly influenced by FU and SE, suggesting that kinesophobia is involved in pain perception. With SL input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When TF are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, FU has an AUC of 0.7 with strong importance of FOXO downregulation. Though larger and longitudinal cohorts are needed, this unique combination of SVM and RNM shall help to map objectively KOA descriptors. Acknowledgements: Catalan & Spanish governments 2020FI_b00680; STRATO-PID2021126469ob-C21-2, European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828). ICREA Academia


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 138 - 138
2 Jan 2024
Muñoz-Moya E Ruiz C Piella G Noailly J
Full Access

This study investigates the relationships between Intervertebral Disc (IVD) morphology and biomechanics using patient-specific (PS) finite element (FE) models and poromechanical simulations. 169 3D lumbar IVD shapes from the European project MySpine (FP7-269909), spanning healthy to Pfirrmann grade 4 degeneration, were obtained from MRIs. A Bayesian Coherent Point Drift algorithm aligned meshes to a previously validated structural FE mesh of the IVD. After mesh quality analyses and Hausdorff distance measurements, mechanical simulations were performed: 8 and 16 hours of sleep and daytime, respectively, applying 0.11 and 0.54 MPa of pressure on the upper cartilage endplate (CEP). Simulation results were extracted from the anterior (ATZ) and posterior regions (PTZ) and the center of the nucleus pulposus (CNP). Data mining was performed using Linear Regression, Support Vector Machine, and eXtreme Gradient Boosting techniques. Mechanical variables of interest in DD, such as pore fluid velocity (FLVEL), water content, and swelling pressure, were examined. The morphological variables of the simulated discs were used as input features. Local morphological variables significantly impacted the local mechanical response. The local disc heights, respectively in the mid (mh), anterior (ah), and posterior (ph) regions, were key factors in general. Additionally, fluid transport, reflected by FLVEL, was greatly influenced (r2 0.69) by the shape of the upper and lower cartilage endplates (CEPs). This study suggests that disc morphology affects Mechanical variables of interest in DD. Attention should be paid to the antero-posterior distribution and local effects of disc heights. Surprisingly, the CEP morphology remotely affected the fluid transport in NP volumes around mid-height, and mechanobiological implications shall be explored. In conclusion, patient-specific IVD modeling has strong potential to unravel important correlations between IVD phenotypes and local tissue regulation. Acknowledgments: European Commission: Disc4All-MSCA-2020-ITN-ETN GA: 955735; O-Health-ERC-CoG-2021-101044828


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 75 - 75
17 Apr 2023
Tierney L Kuiper J Williams M Roberts S Harrison P Gallacher P Jermin P Snow M Wright K
Full Access

The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year longitudinally collected clinical data set. Multilevel modelling was conducted using R and 363 ACI procedures were suitable for model inclusion. All longitudinal post-operative Lysholm scores collected after ACI treatment and before a second procedure (such as knee arthroplasty but excluding minor procedures such as arthroscopy) were included. Any patients requiring a bone graft at the time of ACI were excluded. Potential predictors of ACI outcome explored were age at the time of ACI, gender, smoker status, pre-operative Lysholm score, time from surgery, defect location, number of defects, patch type, previous operations, undergoing parallel procedure(s) at the time of ACI, cell count prior to implantation and cell passage number. The best fit model demonstrated that for every yearly increase in age at the time of surgery, Lysholm scores decreased by 0.2 at 1-year post-surgery. Additionally, for every point increase in pre-operative Lysholm score, post-operative Lysholm score at 1 year increased by 0.5. The number of cells implanted also impacted on Lysholm score at 1-year post-op with every point increase in log cell number resulting in a 5.3 lower score. In addition, those patients with a defect on the lateral femoral condyle (LFC), had on average Lysholm scores that were 6.3 points higher one year after surgery compared to medial femoral condyle (MFC) defects. Defect grade and location was shown to affect long term Lysholm scores, those with grade 3 and patella defects having on average higher scores compared to patients with grade 4 or trochlea defects. Some of the predictors identified agree with previous reports, particularly that increased age, poorer pre-operative function and worse defect grades predicted poorer outcomes. Other findings were more novel, such as that a lower cell number implanted and that LFC defects were predicted to have higher Lysholm scores at 1 year and that patella lesions are associated with improved long-term outcomes cf. trochlea lesions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 13 - 13
17 Nov 2023
Armstrong R McKeever T McLelland C Hamilton D
Full Access

Abstract. Objective. There is no specific framework for the clinical management of sports related brachial plexus injuries. Necessarily, rehabilitation is based on injury presentation and clinical diagnostics but it is unclear what the underlying evidence base to inform rehabilitative management. Methods. A systematic review of the literature was undertaken in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We applied the PEO criteria to inform our search strategy to find articles that reported the rehabilitative management of brachial plexus injuries sustained while playing contact sports. An electronic search of Medline, CINAHL, SPORTDiscus and Web of Science from inception to 3rd November 2022 was conducted. MESH terms and Boolean operators were employed. We applied an English language restriction but no other filters. Manual searches of Google Scholar and citation searching of included manuscripts were also completed. All study types were considered for inclusion provided they were published as peer-reviewed primary research articles and contained relevant information. Two investigators independently carried out the searches, screened by title, abstract and full text. Two researchers independently extracted the data from included articles. Data was cross-checked by a third researcher to ensure consistency. To assess internal validity and risk of bias, the Joanna Briggs Institute (JBI) critical appraisal tools were utilised. Results. The search generated 88 articles. Following removal of duplicates, 43 papers were evaluated against the eligibility criteria. Nine were eligible for full text review, with the majority of exclusions being expert opinion articles. Eight case reports were included. One article reported three individuals, resulting in data for ten athletes. The mean age was 19.8 years (±4.09). Injuries occurred in five American football players, two wrestlers, two rugby players, and a basketball player. No two studies applied the same diagnostic terminology and the severity of injury varied widely. Burning pain and altered sensation was the most commonly reported symptom, alongside motor weakness in the upper limb. Clinical presentation and management differed by injury pattern. Traction injuries caused biceps motor weakness and atrophy of the deltoid region, whereas compression injuries led to rotator cuff weakness. In all cases treatment was separated into acute and rehabilitative management phases, however the time frames related to these differed. Acute interventions varied but essentially entailed soft tissue inflammation management. Rehabilitation approaches variously included strengthening of shoulder complex and cervical musculature. Return-to-play criteria was opaque. The methodological quality of the case reports was acceptable. Four met all nine of the JBI evaluation criteria, and a further three met at least 75% of items. Conclusion(s). There is a distinct lack of evidence supporting rehabilitation management of sports related brachial plexus injury. Through systematic review we found only eight reports, representing ten individual case studies. No trials, cohort studies, or even retrospective registry-based studies are available to inform clinical management, which, necessarily, is driven by expert opinion and application of basic rehabilitation principles. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 109 - 109
14 Nov 2024
Weiden GVD Egmond NV Karperien M Both S Mastbergen S Emans P Caron J Custers R
Full Access

Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or trochlear groove (mean size±SD, 1.2±0.4cm2). No signs of an adverse foreign tissue reaction or serious adverse events were recorded within the safety cohort. At final follow-up mean KOOS±SD was 66.9±23.5, mean NRS resting±SD was 1.3±1.9, NRS activity±SD was 3.8±2.9 and mean SF-36±SD was 72.0±10.9. ΔKOOS was 21. One patient sustained new knee trauma prior to final follow-up, affecting final scores considerably. When excluded, ΔKOOS was 24(n=9). Conclusion. These promising initial findings provide a solid basis for continuation and expansion of this unique cartilage treatment. The MIC of 10 was surpassed. Though, results should be interpreted cautiously as they are based solely on preliminary data of the first 10 patients. Acknowledgements. Study is sponsored by Hy2Care, producer of the CartRevive®(dextran-tyramine) Hydrogel implant


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 34 - 34
17 Apr 2023
Cunningham B Donnell I Patton S
Full Access

The National Hip Fracture Database (NHFD) is a clinically led web based audit used to inform national policy guidelines. The aim of this audit was to establish the accuracy of completion of NHFD v13.0 theatre collection sheets, identify common pitfalls and areas of good practice, whilst raising awareness of the importance of accuracy of this data and the manner in which it reflects performance of CAH Trauma & Orthopaedic unit in relation to national guidelines. Our aim was to improve completion up to >80% by the operating surgeon and improve overall accuracy. The methodology within both cycles of the audit were identical. It involved reviewing the NHFD V13.0 completed by the operating surgeon and cross-checking their accuracy against clinical notes, operation notes, imaging, anaesthetic charts and A&E admission assessment. Following completion of cycle 1 these results were presented, and education surrounding V13.0 was provided, at the monthly trust audit meeting. At this point we introduced a sticker onto the pre-operative checklist for Hip fractures. This included time of admission and reason for delay. We then completed a re-audit. Cycle-1 included 25 operations, 56% (n=14) had a completed V13.0 form. Of these 21% (n=3) were deemed to be 100% accurate. Cycle-2 included 31 operations (between April – June 21) 81% (n=25) had a completed intra-operative from and showed an increase in accuracy to 56% (n=14). Through raising awareness, education and our interventions we have seen a significant improvement in the completion and accuracy of v13.0. Although 100% accuracy was not achieved its clear that education and intervention will improve compliance over time. Through the interventions that we have implemented we have shown that it is possible to improve completion and accuracy of the NHFD V13.0 theatre collection sheet locally and feel this could be implemented nationally


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 67 - 67
4 Apr 2023
Emmerzaal J De Brabandere A van der Straaten R Bellemans J De Baets L Davis J Jonkers I Timmermans A Vanwanseele B
Full Access

In a clinical setting, there is a need for simple gait kinematic measurements to facilitate objective unobtrusive patient monitoring. The objective of this study is to determine if a learned classification model's output can be used to monitor a person's recovery status post-TKA. The gait kinematics of 20 asymptomatic and 17 people with TKA were measured using a full-body Xsens model. 1. The experimental group was measured at 6 weeks, 3, 6, and 12 months post-surgery. Joint angles of the ankle, knee, hip, and spine per stride (10 strides) were extracted from the Xsens software (MVN Awinda studio 4.4). 1. . Statistical features for each subject at each evaluation moment were derived from the kinematic time-series data. We normalised the features using standard scaling. 2. We trained a logistic regression (LR) model using L1-regularisation on the 6 weeks post-surgery data2–4. After training, we applied the trained LR- model to the normalised features computed for the subsequent timepoints. The model returns a score between 0 (100% confident the person is an asymptomatic control) and 1 (100% confident this person is a patient). The decision boundary is set at 0.5. The classification accuracy of our LR-model was 94.58%. Our population's probability of belonging to the patient class decreases over time. At 12 months post-TKA, 38% of our patients were classified as asymptomatic


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 39 - 39
17 Nov 2023
FARHAN-ALANIE M Gallacher D Kozdryk J Craig P Griffin J Mason J Wall P Wilkinson M Metcalfe A Foguet P
Full Access

Abstract. Introduction. Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique. Methods. We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI). Results. For THR, analysis comparing computer-guided versus conventional technique demonstrated HR of 0.771 (95%CI 0.573–1.036) p=0.085, and 0.594 (95%CI 0.297–1.190) p=0.142, for revision for all-causes and dislocation, respectively. When comparing robotic-assisted versus conventional technique, HR for revision for all-causes was 0.480 (95%CI 0.067 –3.452) p=0.466. For TKR, compared to conventional surgery, HR for all-cause revision for procedures performed using computer guidance and patient-specific jigs were 0.967 (95% CI 0.888–1.052) p=0.430, and 0.937 (95% CI 0.708–1.241) p=0.65, respectively. HR for analysis comparing robotic-assisted versus conventional technique was 2.0940 (0.2423, 18.0995) p = 0.50. Conclusions. This is the largest study investigating this topic utilising propensity score analysis methods. We did not find a statistically significant difference in revision for all-causes and dislocation although these analyses are underpowered to detect smaller differences in effect size between groups. Additional comparison for revision for dislocation between robotic-assisted versus conventionally performed THR was not performed as this is a subset of revision for all-causes and wide confidence intervals were already observed for that analysis. It is also important to mention this NJR analysis study is of an observational study design which has inherent limitations. Nonetheless, this is the most feasible study design to answer this research question requiring use of a large data set due to revision being a rare outcome. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 61 - 61
4 Apr 2023
Makaram N Al-Hourani K Nightingale J Ollivere B Ward J Tornetta III P Duckworth A
Full Access

The aim of this study was to perform a systematic review of the literature on Gustilo-Anderson (GA) type IIIB open tibial shaft (AO-42) injuries to determine the consistency of reporting in the literature.

A search of PubMed, EMBASE and Cochrane Central Register of Controlled Trials was performed to identify relevant studies published from January 2000 to January 2021 using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The study was registered using the PROSPERO International prospective register of systematic reviews. Patient/injury demographics, management and outcome reporting were recorded.

There were 32 studies that met the inclusion criteria with a total of 1,947 patients (70.3% male, 29.7% female). There were 6 studies (18.8%) studies that reported on comorbidities and smoking, with mechanism of injury reported in 22 (68.8%). No studies reported on all operative criteria included, with only three studies (9.4%) reporting for time to antibiotics, 14 studies (43.8%) for time from injury to debridement and nine studies (28.1%) for time to definitive fixation. All studies reported on the rate of deep infection, with a high proportion documenting union rate (26/32, 81.3%). However, only two studies reported on mortality or on other post-operative complications (2/32, 6.3%). Only 12 studies (37.5%) provided any patient reported outcomes.

This study has demonstrated a deficiency and a lack of standardized variable and outcome reporting in the orthopaedic literature for Gustilo-Anderson type IIIB open tibial shaft fractures. We propose a future international collaborative Delphi process is needed to standardize.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 8 - 8
1 Dec 2020
Kaya C Yucesoy C
Full Access

Background. Spastic muscles of patients with cerebral palsy (CP) are considered structurally as shortened muscles, that produce high force in short muscle lengths. Yet, previous intraoperative studies in which muscles’ forces are measured directly as a function of joint angle showed consistently that spastic knee flexor muscles produce a low percentage of their maximum force in flexed knee positions. They also showed effects of epimuscular myofascial force transmission (EMFT): simultaneous activation of different muscles elevated target muscle's force. However, quantification of spastic muscle's force - muscle-tendon unit length (l. MTU. ) data during gait is lacking. Aim. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test the following hypotheses: activated spastic semitendinosus (ST) muscle (1) operates at short l. MTU. 's during gait, forces are (2) low at short l. MTU. 's and (3) increase by co-activating other muscles. Methods. Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic ST distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) activation of the ST individually and (ii) simultaneously with the gracilis, biceps femoris, and rectus femoris muscles endorsing EMFT. In OpenSim, gait_2392 model was used for each limb to (a) calculate l. MTU. per each hip and knee angle combination and the gait relevant l. MTU. range, and (b) analyze gait relevant spastic muscle force - l. MTU. data. Two-way ANOVA was used to compare the patients’ l. MTU. to those of the seven age-matched typically developing (TD) children. l. MTU. values were normalized for the participants’ thigh length. (a) was used to test hypothesis (1) and (b) to test hypotheses (2) and (3): in condition (i), the percent of peak force exerted at the shortest l. MTU. calculated per limb was used as a metric for (2). In condition (ii), mean percent change in muscle force calculated within gait-relevant l. MTU. range was used as a metric for (3). Results. Modeling showed that l. MTU. of spastic ST during gait is shorter on average by 14.1% compared to TD. The ST active force at the shortest gait-relevant l. MTU. was 68.6 (20.6)% (39.9–99.2%) of the peak force. Simultaneous activation of other muscles caused substantial increases in force (minimally by 11.1%, up to several folds, with an exception for one limb). Therefore, only the first and third hypotheses were confirmed. Conclusion. The modeling showed in concert with the clinical considerations that spastic ST may be a shortened muscle that produces high force in short muscle lengths. However, this contrasts intraoperative data, which shows only low forces in flexed knee positions. Note that, the model does not distinguish the muscle-belly and tendon lengths. Therefore, it cannot isolate shorter muscle length and how this compares to the data of TD children remains unknown. Yet, the effects of co-activation of other muscles shown intraoperatively to cause an increase of the spastic ST's force are observed also in muscle force - l. MTU. data characterizing gait. Therefore, if indeed spastic ST produces high forces in short muscle-belly lengths alone, elevated forces due to co-activation of other muscles may be considered as a contributor to the patients’ pathological gait. Otherwise, such EMFT effect may be the main determinant of the pathological condition


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 11 - 11
2 Jan 2024
Petrucci G Papalia GF Russo F Ambrosio L Papalia R Vadalà G Denaro V
Full Access

Chronic low back pain (CLBP) is the most common cause of disability worldwide, and lumbar spine fusion (LSF) is often chosen to treat pain caused by advanced degenerative disease when clinical treatment failed certain cases, the post-surgical outcomes are not what was expected. Several studies highlight how important are. In psychological variables during the postoperative spine surgery period. The aim of this study is to assess the role of preoperative depression on postoperative clinical outcomes. We included patients who underwent LSF since December 2021. Preoperative depression was assessed administering Beck Depression Inventory questionnaire (BDI). And pain and disability were evaluated at 1, 3, and 6 months, administering respectively Visual Analogic Scale (VAS) and Oswestry Disability Index (ODI). As statistical analysis Mann-Whitney test was performed. We included 46 patients, 20 female (43,5%) and 26 male (56,5%) with an average age of 64,2. The population was divided in two groups, fixing the BDI cut-off point at 10. Patients with BDI < 10 points (N=28) had normal mental health status, instead patients with BDI > 10 points (N=16) had depressive disorders. At 3 months patients with healthy mental status reported statistically significant reduction of pain (U = 372,5, p = .006) and improvement of disability but without statistical significancy (U = 318, p = 0,137). At 6 months patients without psychological disease reported statistically significant reduction of pain (U = 342, p = 0,039) and disability (U = 372,5, p = 0,006).

This study demonstrates the correlation between pre-existing depressive state and poorer clinical outcomes after spine surgery. These results are consistent with the literature. Therefore, during the surgical decision making it is crucial to take psychological variables into account in order to predict the results after surgery and inform patients on the potential influence of mental status.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 52 - 52
1 Apr 2017
Cundall-Curry D Lawrence J
Full Access

Background. Since it's establishment in 2007, the National Hip Fracture Database [NHFD] has been the key driving force in improving care for hip fracture patients across the UK. It has facilitated the setting of standards to which all musculoskeletal units are held, and guides service development to optimise outcomes in this group of patients. As with any audit, the ability to draw conclusions and make recommendations for changes in practise relies on the accuracy of data collection. This project aimed to scrutinise the data submitted to the NHFD from a Major Trauma Centre [MTC], focusing on procedure coding, and discuss the implications of any inaccuracies. Method. The authors performed a retrospective analysis of all procedure coding data entered into the NHFD from July 2009 to July 2014 at Cambridge University Hospitals NHS Foundation Trust. We examined 1978 cases for discrepancies, comparing procedure codes entered into the NHFD with post-procedure imaging and operative notes. Results. The procedure coding data submitted to the NHFD was highly inaccurate, with incorrect procedure codes in 24% of the 1978 cases reviewed. In particular, coding of cemented total arthroplasty and cemented bipolar hemiarthroplasty, with coding errors in registry data of 42% and 39% respectively. Of the 67 THRs performed only 52% were correctly coded for, and only 626 of the 915 hemiarthroplasties (68%). 16% of cannulated hip screws actually underwent primary arthroplasty. Conclusions. This study highlights the inaccuracy of coding data entered into the NHFD from a Major Trauma Centre, with data on arthroplasty being particularly inadequate. The unreliability of procedure data leaves us unable to evaluate surgical treatment strategies using the NHFD. This has worrying implications for standard setting, service development and, consequently, patient care. Level of evidence. 2c


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 107 - 107
1 Nov 2018
Sheridan G Kelly R McDonnell S Kenny P
Full Access

This was a retrospective study of registry data from a National Orthopaedic Hospital for all THRs with 10-year follow-up data. Inclusion criteria were all THRs with a minimum of 10-year follow-up data. All metal-on-metal (MoM) THRs and MoM resurfacings were excluded from the analysis due to the high rate of revision associated with these bearings. Univariate and multivariate analyses controlling for confounding variables were performed to compare outcomes. A total of 1,697 THRs were performed in 1,553 patients. The four significant predictors for revision were fixation type (p<0.01), surface bearing type (p<0.01), age (P<0.05) and head size (p<0.05). Gender, BMI and approach had no effect on revision rates. The lowest 10-year all-cause revision rates were seen in cemented THRs at 1.7%. Ceramic-on-poly bearings had the lowest revision rate at only 1.2%. Metal-on-poly bearings had a 1.7% revision rate. Ceramic on ceramic bearings had a 7.1% revision rate with 1 revision for squeak and 1 revision for ceramic head fracture. The causes for revision in order of decreasing frequency were as follows: Infection (n=13, 0.7%), dislocation (n=7, 0.4%), periprosthetic fracture (n=3, 0.2%) and aseptic loosening (n=2, 0.1%). There were 2 re-revisions at 10 years in total. The smaller 22.225mm head sizes had a significantly lower revision rate than other head sizes (p<0.05). Ceramic-on-poly bearings, cemented fixation and smaller head sizes perform better in the experience of this registry. However, with multivariate analysis, these differences were shown to be insignificant


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 40 - 40
1 Jan 2017
Benassarou M Schouman T Pazart L Gindraux F Bertolus C Meyer C
Full Access

In the area of 3D printing, more and more maxillofacial surgery departments are equipped with 3D printers to build their own anatomical models or surgical guides. Prior to be printable, the patients' DICOM imaging data has to be converted to a 3D virtual model, a 3D mesh. The file format most commonly used is the STL (Standard Tesselation Language) file format. Many programs exist that are able to convert DICOM data to STL files. Commercial software, such as Surgicase CMF© are FDA- and CE-approved whereas free programs, available online do not have the approval. However, the latter are often used anyway because of financial reasons. In this article, we investigate whether 6 of these software solutions are equivalent or not. Thin slice CT imaging data of a patient's mandible (in DICOM file format) was converted to STL meshes with 6 different software solutions. One commercial program, Surgicase CMF©, was used to build the reference model. Then 5 free programs were used to create 5 models of the same mandible, specifying the same thresholding parameters: InVesalius 3.0, 3DimViewer 2.2.4, 3D Slicer, itk-Snap and Seg3D. All of these models were loaded in Netfabb Basic 6.4 to retrieve dimensional data, geometric information and the number of holes in each mesh. Finally, the models were then compared to the reference model using CloudCompare 2.6.2. All models created with free software differed from the reference model in the 3 dimensions. Mean length difference was −0.74 mm [−2.06; −0.32] (SD: 0.74), mean width difference −0.45 mm [−0.76; −0.25] (SD: 0.19) and mean height difference was 0.41 mm [0.14; 0.62] (SD: 0.18). Although the height was increased in all models, both the length and width were systematically decreased, resulting in an average decrease of volume of −7.1 cm. 3. [−7.45; −6.77] (SD: 0.32). The number of triangles used to create each mesh ranged from 20944 to 368244, resulting in a variation of the file size from 1023 Ko to 80462 Ko (0.16 to 12.70 times the file size of the reference model). Two of the free programs created meshes with errors, such as the presence of holes (non-watertight meshes) that could be repaired with Netfabb. Free programs able to convert volume imaging data to a printable virtual mesh do not provide equivalent results. Variations were noted in the three plane of space with a systematic difference between free programs and the commercial FDA-approved one. While the length and width were less than a millimeter different to the reference, the dimension that most varied was the length with a difference reaching −2.06 mm with itk-Snap. Geometric data also varied significantly, the number of triangles composing the meshes being much different than the reference, resulting in variable file sizes. This traduces the fact that algorithms used by the programs are not the same. In the era of 3D printing made directly accessible in surgical departments, great attention should be paid to the accuracy of the models created with free software


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract

Objectives

This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups.

Methods

7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data. Method. We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. Results. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10. -4. for LS and 2.7 × 10. -2. for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10. -4. for femoral necks and 2.6 × 10. -2. for lumbar spines BMD in meQTLs-based GSEA). Conclusion. Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article: W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572–576


Abstract

Cranial cruciate ligament (CrCL) disease/rupture is a highly prevalent orthopaedic disease in dogs and common cause of pain, lameness, and secondary joint osteoarthritis (OA). Previous experiments investigating the role of glutamate receptors (GluR) in arthritic degeneration and pain revealed that OA biomarkers assessing early bone turnover and inflammation, including osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) are more likely to be influenced by glutamate signalling. Moreover, interleukin-6 (IL-6) has a complex and potentially bi directional (beneficial and detrimental) effect, and it is a critical mediator of arthritic pain, OA progression and joint destruction.

Objectives

1) to recruit dogs undergoing CrCL disease/rupture surgery and obtain discarded synovial fluid (SF) and serum/plasma (ethics approval, RCVS:2017/14/Alves); 2) to quantify the biomarkers listed above in the SF and serum/plasma by enzyme linked immunosorbent assay (ELISA); 3) to assess radiographic OA at the time of surgery and correlate it with the biomarkers and clinical findings.

Methods

Abnova, Abcam and AMSBIO ELISA kits were tested using a validation protocol relating the standard curve to a dilution series of SF and serum/plasma (1× to 1/50×), with and without SF hyaluronidase treatment to evaluate linearity, specificity and optimal dilutions. Validated ELISA kits were used to measure [IL-6], glutamate [glu], [RANKL] and [OPG] in SF and serum/plasma. For each dog, CrCL disease pre-operative lameness scores were graded as: (1) mild, (2) moderate (easily visible), (3) marked (encumbered), (4) non-weightbearing lameness. Blinded OA scoring was performed on radiographs [15–60, normal-severe OA].


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 49 - 49
1 Aug 2013
O'Flaherty E Bell S McKay D Wellington B Hart A Hems T
Full Access

To collate and present epidemiological data collected by Scottish National Brachial Injury Service over the past decade. The Brachial Plexus Injury Service is based at the Victoria Infirmary, Glasgow and has been a designated National Service since 2004. It provides an integrated multidisciplinary service for traumatic brachial plexus injury and plexus tumours. The Service maintains an active archive recording details of all clinical referrals and procedures conducted by the Service over the past decade. The data presented here was derived from analysis of this database and information contained in the National Brachial Plexus Injury Service Annual Report 2010/11 & 2011/12. Data shows that there has been a steady rate in the number of referrals to the Service, particularly since 2004, with an average of 50 cases referred per annum. Of these, approximately 25% required formal surgical exploration for traumatic injury and a further 10% required surgery for brachial plexus tumour removal. The vast majority of referred cases are treated non-operatively, with appropriate support from specialist physiotherapy and occupational therapy. Referrals to the Service appear well distributed from around Scotland. However, data from 2011 shows that Greater Glasgow & Clyde is the greatest individual source of referrals and subsequent hospital admissions for surgical treatment. The commonest mechanism of brachial plexus injury appears to be secondary to falls and motorcycle RTA. Using the Disabilities of the Arm, Shoulder and Hand (DASH) Score, improved functional outcomes have been demonstrated consistently in patients who have undergone surgery for brachial plexus injuries within the Service. Over the past decade, the Brachial Plexus Injury Service has had a steady patient referral record from across the Scotland, particularly Glasgow. Data indicates that there is an on-going clinical need for provision of the service with improved outcomes and reduced functional disability in patients treated by the service. It is envisaged that data from the Service will also act as a useful planning model for the provision of UK national services in the future