Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Methods and Results. Immunohistochemistry for the senescence marker: p16. INK4A. was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16. INK4A. positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. Conclusions. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression, which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 212 - 217
1 Mar 1998
Inoue M Minami S Kitahara H Otsuka Y Nakata Y Takaso M Moriya H

We investigated 21 pairs of twins for zygosity and idiopathic scoliosis. DNA fingerprinting confirmed that 13 pairs were monozygotic and eight were dizygotic. There was concordance for idiopathic scoliosis in 92.3% of monozygotic and 62.5% of dizygotic twins. Of the 12 pairs of monozygotic twins concordant for idiopathic scoliosis, six showed discordant curve patterns but eight had differences in Cobb angle of less than 10°. Seven of the ten pairs of monozygotic twins had similar back shapes. Our findings suggest that there is a genetic factor in the aetiology of idiopathic scoliosis; they also indicate that there is a genetic factor in both the severity of the curve and the general shape of the back


Aims

Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in spinal fusion surgery and, like most rehabilitation treatments, they are rarely well specified. Spinal fusion patients experience anxieties perioperatively about pain and immobility, which might prolong hospital length of stay (LOS). The aim of this prospective cohort study was to determine if a Preoperative Spinal Education (POSE) programme, specified using the Rehabilitation Treatment Specification System (RTSS) and designed to normalize expectations and reduce anxieties, was safe and reduced LOS.

Methods

POSE was offered to 150 prospective patients over ten months (December 2018 to November 2019) Some chose to attend (Attend-POSE) and some did not attend (DNA-POSE). A third independent retrospective group of 150 patients (mean age 57.9 years (SD 14.8), 50.6% female) received surgery prior to POSE (pre-POSE). POSE consisted of an in-person 60-minute education with accompanying literature, specified using the RTSS as psychoeducative treatment components designed to optimize cognitive/affective representations of thoughts/feelings, and normalize anxieties about surgery and its aftermath. Across-group age, sex, median LOS, perioperative complications, and readmission rates were assessed using appropriate statistical tests.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 25 - 25
7 Aug 2024
Nüesch A Kanelis E Alexopoulos L Williams F Geris L Gantenbein B Lacey M Breakwell L Maitre CL
Full Access

Introduction. Multiple studies have identified Cutibacterium acnes (C.acnes) and other microbes in intervertebral disc tissue using 16S DNA Sequencing and microbial cultures. However, it remains unclear whether these bacteria are native to the discs or result from perioperative contamination. Our study aimed to detect Gram-positive bacteria in non-herniated human disc samples and explore correlations with Toll-like receptors (TLR) 2, TLR4, NLRP3, and Gasdermin D. Methods. Immunohistochemical staining was conducted on 75 human IVD samples for Gram-positive bacteria, S. aureus, C.acnes, TLR2, TLR4, NLRP3, and Gasdermin D. Cell detection and classification were performed using QuPath. NP cells were treated with Lipopolysaccharide (LPS) and Peptidoglycan (PGN) in monolayer and alginate beads for up to 72 hours, followed by secretome analysis using Luminex. Statistical analysis included Kruskal-Wallis, Dunn's multiple comparison test, and Pearson correlation. Results. Immunohistochemical staining revealed Gram-positive bacteria exclusively within cells, with C. acnes positivity ranging from 5–99% and correlating with patient age (r=0.41, p= 0.007). TLR2 positivity ranged from 5–99% and TLR4 from 3–72%, showing a strong correlation (r= 0.62, p= 1.5e-006). Females with mid-degenerative grades exhibited significantly decreased TLR2 expression compared to those without degeneration signs. Treatment with LPS and PGN increased catabolic cyto- and chemokines associated with IVD degeneration. Conclusion. In conclusion, this study confirms Gram-positive bacteria presence in non-herniated human disc samples and highlights their role in triggering a catabolic response in disc cells. No conflicts of interest.  . Sources of funding. This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims

Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI.

Methods

In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 137 - 137
1 Apr 2012
Ahluwalia R Quraishi N Hughes S
Full Access

Much has been written about ESP (Extended Scope Practitioners) lead clinical services, the vast majority of which have been developed in secondary care. Little evidence is available on the efficacy of ESP. clinics either for both the patient and weather they stream line back pain treatment. We present an interim audit of an assessment pathway for community management and MDT practice for lower back pain. 56 patients were reviewed with a revised ESP assessment tool and then presented to an MDT meeting. Each, assessment was 45 minutes long and outcome measures used included ODI and STaRT scores. Patients were telephoned at 12 weeks following their appointment and then at 18 weeks, to ascertain the progress they were making and to see if the 18-week target had been met. 56 patients were reviewed from September 2009. The average ODI, was 63%, and 56% at 12 weeks; most patients had a STaRT score of 6, and 3 on the psychological component it the beginning of the study. The EQ-5D scores were observed to show an improvement. MRI rates were 3.8% and the DNA rate was 7%. A total of 11 MRI requests; the results of 7 of these were available for analysis. The scans that were requested all showed a disc lesion that was amenable to surgical decompression or stabilization. Overall patients were very satisfied. Our formatted methodology allowed clinical governance at source to measure the efficacy of patient treatment. Early results suggest an efficient in delivering an acceptable standard of care as long as they are properly supported


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 45 - 45
1 Jun 2012
Chettier R Nelson L Ogilvie J Macina R Ward K
Full Access

Introduction. Several disorders have been associated with genetic variants. Copy number variations (CNVs) are documented micro DNA insertions and deletions that may be ten times more frequent than point mutations. We undertook a genome-wide scan to find CNVs associated with adolescent idiopathic scoliosis (AIS). Methods. 879 white individuals with AIS severe spine curvatures and 1486 white controls were evaluated for CNVs with the Affymetrix 6.0 HUSNP array. After implementation of quality filters, data were quantile normalised. Copy number analysis was done with Helix Tree (Golden Helix, Bozeman, MT, USA). The copy number segments were measured with the Golden Helix's univariate segmentation algorithm. Statistically different segments were extracted with mean Log2 ratio intensity for that segment to highlight deletions, neutrals, and duplications. We then undertook association analysis on those segments. A p value of less than 10–7 was regarded as significant. Results. We recorded 143 significant segments or regions associated with AIS. 94 of these regions showed gains of copy whereas 49 had deletions. 63 of these significant regions map to known genes. Biological functions of the proteins coded by the genes identified complex groups associated with embryonic development, nervous system development and function, and bone and soft tissue development. These groups present an extensive overlap with the biological function groups that were generated with associated single-nucleotide polymorphism data from the same group of individuals. Conclusions. For the first time we show significant copy number loss or gain in several genomic regions for patients with AIS with severe spine curves compared with a control population. We are testing CNVs in patients with a mild spine curvature to establish whether they improve the performance of AIS prognostic testing. The identification of novel or rare CNVs in severe cases of AIS could lead to the enhancement of prognostic testing and help to identify specific biological pathways that cause AIS or accelerate AIS progression


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 47 - 47
1 Jun 2012
Miller N Justice CM Marosy B Patel A Swindle K
Full Access

Introduction. Idiopathic scoliosis (IS) has been associated with several genetic loci in varying study populations, reflecting the disorder's genetic complexity. One region of interest is on chromosome 17, flanking regions linked to neurofibromatosis type 1 (NF1). This region is of particular relevance because the most common osseous manifestation in NF1 is scoliosis (10–30% of patients). This alludes to a potential genetic correlation within this region affecting spinal development or stability. The objective of this research is to identify candidate genes within this region that are statistically linked to IS. Methods. An initial population of IS families recruited through approval by the institutional review board (202 families; 1198 individuals) had DNA harvested from blood, and underwent genomic screening, finemapping, and statistical analyses. We identified a specific familial subset: families with males having undergone surgery for scoliosis (17 families, 147 individuals). The initial genome-wide scan indicated that this subset was linked to chromosome 17q.11.2. The most prominent marker, D17s975, (p=0·0003) at 25.12 Mb is adjacent to the NF1 deletional region. We then analysed a custom panel of single-nucleotide polymorphisms (SNPs) extending from 18·30–31·47 Mb for linkage through Taqman SNP assay protocol. With allele specific fluorescent tags, allelic discrimination was done with real-time PCR. Results. Findings show two regions with two or more contiguous SNPs of significance (p<0·05), confirming significant linkage adjacent to the NF1 locus (table). The most significant results lie within the serotonin transporter gene SLC6A4, whose product is a modulator of serotonin (5-HT) activity. Conclusions. IS is a disorder of variable phenotypic expression that has been related to several regions on the genome. Although NF1 has been definitively associated with a region on chromosome 17, the phenotypic expression is not understood at the molecular level. The elucidation of shared genetic variations within this region by two disorders marked by scoliosis has significance for the molecular understanding of the pathogenesis of scoliosis and axial development. The specific gene, SLC6A4, is of particular interest in that as a modulator of serotonin transport, bone mineral content, density, and mechanical strength can be altered. Both NF1 and IS in some patients have been associated with decreased bone mineral density. Future work will focus on replication of these findings and targeted genetic sequencing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 27 - 27
1 Jun 2012
Miller N Carry P Chan K Strain J Swindle K Rousie D
Full Access

Introduction. Studies of the vestibular system in patients with idiopathic scoliosis (IS) have shown abnormalities in the semicircular canals (SCC) and the basicranium. Rousie (2008) revealed a statistically increased incidence of structural anomalies in the SCCs with three-dimensional computer generated modelling. Some of these findings were replicated in a small population by Cheng (2010). The primary goals of this investigation are verification of SCC abnormalities of patients with IS versus controls with use of three-dimensional modelling with subsequent development of a unique phenotypical classification. Our long-term goal is to provide new direction for hypothesis directed identification and characterisation of genes causally related to IS. Methods. 20 patients with IS and 20 controls matched for age and sex will be identified through the clinic with approval from the institutional review board. Power analyses were done to detect the difference in distributions as the proportion of fisher tests with p values less than 0·05. A sample size of 20 per group gives 86–99% power to realise results under conservative assumptions. IS patients and controls undergo vestibular system examination via T2 MRI imaging. Extracted data are evaluated by a team including Dr Rousie, ENT, radiology, and orthopaedic surgery. DNA is extracted with Gentra Puregene kits from Qiagen (Valencia, CA, USA). Developmental genes related to SCC and axial somatogenesis are being identified through a bioinformatics approach, targeting known IS genomic loci. Custom single-nucleotide polymorphism panels, statistical linkage, and association will identify genes of significance for sequencing. Results. To date, 11 patients with IS and four controls have been recruited. Preliminary data are indicative of a significant percentage of abnormalities within the SCC system in children with IS. Analyses of preliminary findings continue according to the protocol. Conclusions. Research into genetic factors predicting IS progression and/or magnitudes of curvature have been inconclusive. Whether these abnormalities are primary or secondary to a larger systemic issue is speculative; however, they demonstrate a potential new phenotypical classification. Our initial findings show evidence of SCC abnormalities in patients with IS in a well defined patient population compared with healthy controls. Ultimately, our goal for this project is to pursue investigations of genes, pseudogenes, and conserved sequences shown to be related to vestibular structural formation during embryogenesis and development. The identification of a subset of individuals with IS and vestibular abnormalities will allow for the study of genes involved concomitantly in the embryological development of both systems, thus providing insight into the inter-relationship of these deformities


Bone & Joint Research
Vol. 9, Issue 5 | Pages 225 - 235
1 May 2020
Peng X Zhang C Bao J Zhu L Shi R Xie Z Wang F Wang K Wu X

Aims

Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs).

Methods

Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory environment of IDD. The cell viability and senescence were examined to investigate the effect of A20 on TNF-α-treated NPCs. The expression of messenger RNA (mRNA)-encoding proteins related to matrix macromolecules (collagen II, aggrecan) and senescence markers (p53, p16). Additionally, NF-κB/p65 activity of NPCs was detected within different test compounds.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1118 - 1122
1 Aug 2010
Lee JS Suh KT Eun IS

Low bone mass and osteopenia have been described in the axial and peripheral skeleton of patients with adolescent idiopathic scoliosis (AIS). Recently, many studies have shown that gene polymorphism is related to osteoporosis. However, no studies have linked the association between IL6 gene polymorphism and bone mass in AIS. This study examined the association between bone mass and IL6 gene polymorphism in 198 girls with AIS. The polymorphisms of IL6-597 G→A, IL6-572 G→C and IL6-174 G→A and the bone mineral density in the lumbar spine and femoral neck were analysed and compared with their levels in healthy controls. The mean bone mineral density at both sites in patients with AIS was decreased compared with controls (p = 0.0022 and p = 0.0013, respectively). Comparison of genotype frequencies between AIS and healthy controls revealed a statistically significant difference in IL6-572 G→C polymorphism (p = 0.0305). There was a significant association between the IL6-572 G→C polymorphism and bone mineral density in the lumbar spine, with the CC genotype significantly higher with the GC (p = 0.0124) or GG (p = 0.0066) genotypes.

These results suggest that the IL6-572 G→C polymorphism is associated with bone mineral density in the lumbar spine in Korean girls with AIS.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 684 - 689
1 May 2012
Tsirikos AI Smith G

We reviewed 31 consecutive patients with Friedreich’s ataxia and scoliosis. There were 24 males and seven females with a mean age at presentation of 15.5 years (8.6 to 30.8) and a mean curve of 51° (13° to 140°). A total of 12 patients had thoracic curvatures, 11 had thoracolumbar and eight had double thoracic/lumbar. Two patients had long thoracolumbar collapsing scoliosis with pelvic obliquity and four had hyperkyphosis. Left-sided thoracic curves in nine patients (45%) and increased thoracic kyphosis differentiated these deformities from adolescent idiopathic scoliosis. There were 17 patients who underwent a posterior instrumented spinal fusion at mean age of 13.35 years, which achieved and maintained good correction of the deformity. Post-operative complications included one death due to cardiorespiratory failure, one revision to address nonunion and four patients with proximal junctional kyphosis who did not need extension of the fusion. There were no neurological complications and no wound infections. The rate of progression of the scoliosis in children kept under simple observation and those treated with bracing was less for lumbar curves during bracing and similar for thoracic curves. The scoliosis progressed in seven of nine children initially treated with a brace who later required surgery. Two patients presented after skeletal maturity with balanced curves not requiring correction. Three patients with severe deformities who would benefit from corrective surgery had significant cardiac co-morbidities.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 346 - 348
1 Mar 2007
Danaviah S Govender S Gordon ML Cassol S

Non-tuberculous mycobacterial infections pose a significant diagnostic and therapeutic challenge. We report two cases of such infection of the spine in HIV-negative patients who presented with deformity and neurological deficit. The histopathological features in both specimens were diagnostic of tuberculosis. The isolates were identified as Mycobacterium intracellulare and M. fortuitum by genotyping (MicroSeq 16S rDNA Full Gene assay) and as M. tuberculosis and a mycobacterium other than tuberculosis, respectively, by culture. There is a growing need for molecular diagnostic tools that can differentiate accurately between M. tuberculosis and atypical mycobacteria, especially in regions of the developing world which are experiencing an increase in non-tuberculous mycobacterial infections.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 217 - 223
1 Feb 2013
Hwang CJ Lee JH Baek H Chang B Lee C

We evaluated the efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E-BMP-2) in a mini-pig model of spinal anterior interbody fusion. A total of 14 male mini-pigs underwent three-level anterior lumbar interbody fusion using polyether etherketone (PEEK) cages containing porous hydroxyapatite (HA). Four groups of cages were prepared: 1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks after surgery the mini-pigs were killed and the specimens were evaluated by gross inspection and manual palpation, radiological evaluation including plain radiographs and micro-CT scans, and histological analysis. Rates of fusion within PEEK cages and overall union rates were calculated, and bone formation outside vertebrae was evaluated. One animal died post-operatively and was excluded, and one section was lost and also excluded, leaving 38 sites for assessment. This rate of fusion within cages was 30.0% (three of ten) in the control group, 44.4% (four of nine) in the 50 μg E-BMP-2 group, 60.0% (six of ten) in the 200 μg E-BMP-2 group, and 77.8% (seven of nine) in the 800 μg E-BMP-2 group. Fusion rate was significantly increased by the addition of E-BMP-2 and with increasing E-BMP-2 dose (p = 0.046). In a mini-pig spinal anterior interbody fusion model using porous HA as a carrier, the implantation of E-BMP-2-loaded PEEK cages improved the fusion rate compared with PEEK cages alone, an effect that was significantly increased with increasing E-BMP-2 dosage.

Cite this article: Bone Joint J 2013;95-B:217–23.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 825 - 828
1 Jun 2012
Rajagopal TS Walia M Wilson HA Marshall RW Andrade AJ Iyer S

We report on two cases of infective spondylodiscitis caused by Gemella haemolysans in otherwise healthy patients. This organism has only rarely been identified as a cause of bone and joint infection, with only two previous reports of infective spondylodiscitis.

We describe the clinical features, investigations and treatment options.