Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The
Aims. Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations,
Cup-cage constructs are one of several methods commonly used to treat severe acetabular bone loss during contemporary revision total hip arthroplasty. The purpose of this study was to provide a long-term results of the technique with emphasis on implant survivorship, radiographic results, and clinical outcomes for both full and half
Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management.
An uncemented hemispherical acetabular component
is the mainstay of acetabular revision and gives excellent long-term
results. Occasionally, the degree of acetabular bone loss means that a
hemispherical component will be unstable when sited in the correct
anatomical location or there is minimal bleeding host bone left
for biological fixation. On these occasions an alternative method
of reconstruction has to be used. A major column structural allograft has been shown to restore
the deficient bone stock to some degree, but it needs to be off-loaded
with a reconstruction cage to prevent collapse of the graft. The
use of porous metal augments is a promising method of overcoming
some of the problems associated with structural allograft. If the defect
is large, the augment needs to be protected by a cage to allow ingrowth
to occur.
Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. Methods. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a
The use of ilioischial cage reconstruction for
pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer,
Warsaw, Indiana) cup-cage technique in our institution, due to the
unsatisfactory outcome of using a cage alone in this situation.
We report the outcome of 26 pelvic discontinuities in 24 patients
(20 women and four men, mean age 65 years (44 to 84)) treated by
the cup-cage technique at a mean follow-up of 82 months (12 to 113)
and compared them with a series of 19 pelvic discontinuities in
19 patients (18 women and one man, mean age 70 years (42 to 86))
treated with a cage at a mean follow-up of 69 months (1 to 170).
The clinical and radiological outcomes as well as the survivorship
of the groups were compared. In all, four of the cup-cage group
(15%) and 13 (68%) of the cage group failed due to septic or aseptic
loosening. The seven-year survivorship was 87.2% (95% confidence interval
(CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84)
for the cage-alone group (p = 0.009). There were four major complications
in the cup-cage group and nine in the cage group. Radiological union
of the discontinuity was found in all successful cases in the cup-cage
group and three of the successful cage cases. Three hips in the
cup-cage group developed early radiological migration of the components,
which stabilised with a successful outcome.
Revision surgery for pelvic discontinuity in the presence of bone loss is challenging. The
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. (A). Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture, This reconstruction is used in young patients where restoration of bone stock is important. (B). Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C). Cup-Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
The aim of this study was to examine the results of the acetabular
distraction technique in achieving implantation of a stable construct,
obtaining biological fixation, and producing healing of chronic
pelvic discontinuity at revision total hip arthroplasty. We identified 32 patients treated between 2006 and 2013 who underwent
acetabular revision for a chronic pelvic discontinuity using acetabular
distraction, and who were radiographically evaluated at a mean of
62 months (25 to 160). Of these patients, 28 (87.5%) were female.
The mean age at the time of revision was 67 years (44 to 86). The patients
represented a continuous series drawn from two institutions that
adhered to an identical operative technique.Aims
Patients and Methods
It may not be possible to undertake revision total hip arthroplasty
(THA) in the presence of massive loss of acetabular bone stock using
standard cementless hemispherical acetabular components and metal
augments, as satisfactory stability cannot always be achieved. We
aimed to study the outcome using a reconstruction cage and a porous
metal augment in these patients. A total of 22 acetabular revisions in 19 patients were performed
using a combination of a reconstruction cage and porous metal augments.
The augments were used in place of structural allografts. The mean
age of the patients at the time of surgery was 70 years (27 to 85)
and the mean follow-up was 39 months (27 to 58). The mean number
of previous THAs was 1.9 (1 to 3). All patients had segmental defects
involving more than 50% of the acetabulum and seven hips had an
associated pelvic discontinuity. Aims
Patients and Methods
The custom triflange is a patient-specific implant
for the treatment of severe bone loss in revision total hip arthroplasty
(THA). Through a process of three-dimensional modelling and prototyping,
a hydroxyapatite-coated component is created for acetabular reconstruction.
There are seven level IV studies describing the clinical results
of triflange components. The most common complications include dislocation
and infection, although the rates of implant removal are low. Clinical
results are promising given the challenging problem. We describe
the design, manufacture and implantation process and review the
clinical results, contrasting them to other methods of acetabular
reconstruction in revision THA. Cite this article: