Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 4 - 4
23 Jun 2023
Gross A Safir O Kuzyk P
Full Access

Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The cup-cage reconstruction involves the use of a highly porous metal cup to achieve biological bone ingrowth on both sides of the pelvic discontinuity and an ilioischial cage to provide secure fixation across the discontinuity and bring the articulating hip center to the correct level. The purpose of this study was to report long term follow up of the use of the cup-cage to treat pelvic discontinuity. All hip revision procedures between January 2003 and January 2022 where a cup-cage was used for a hip with a pelvic discontinuity were included in this retrospective review. All patients received a Trabecular Metal Revision Shell with either a ZCA cage or TMARS cage (Zimmer-Biomet Inc.). Pelvic discontinuity was diagnosed on pre-operative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed with failure defined as revision of the cup-cage reconstruction. Fifty-seven cup-cages in 56 patients were included with an average follow-up of 6.25 years (0.10 to 19.98 years). The average age of patients was 72.09 years (43 to 92 years) and 70.2% of patients were female. The five year Kaplan-Meier survival was 92.0% (95% CI 84.55 to 99.45) and the ten year survival was 80.5% (95% CI 58.35 to 102.65). There were 5 major complications that required revision of the cup-cage reconstruction (3 infections and 2 mechanical failures). There were 9 complications that required re-operation without revision of the cup-cage reconstruction (5 dislocations, 3 washouts for infection and one femoral revision for aseptic loosening). In our hands the cup-cage reconstruction has provided a reliable tool to address pelvic discontinuity with an acceptable complication rate


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims. Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. Patients and Methods. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84). Results. The cumulative five-year survivorship of the implant with revision for any cause was 89% (95% confidence interval (CI) 72 to 96) with eight hips at risk. No revision was required for aseptic loosening; however, one patient with one hip (3%) required removal of the ischial flange of the cage due to sciatic nerve irritation. Two patients (6%; two hips) suffered from hip dislocation, whereas one patient (one hip) required revision surgery with cement fixation of a dual-mobility acetababular component into a well-fixed cup-cage construct. Two patients (6%; two hips) developed periprosthetic infection. One patient was successfully controlled with a two-stage revision surgery, while the other patient underwent excision arthroplasty due to severe medical comorbidities. For the whole series, the Harris Hip Score significantly improved from a mean of 30 (15 to 51) preoperatively to 71 (40 to 89) at the latest follow-up (p < 0.001). Conclusion. Our findings suggest that cup-cage reconstruction is a viable option for major segmental bone defects involving the posterior column and PD. It allows adequate restoration of the acetabulum centre with generally good stability and satisfactory postoperative function. Instability and infection remain drawbacks in these challenging revision cases. Cite this article: Bone Joint J 2018;100-B:1442–48


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 3 - 3
23 Jun 2023
Berdis GE Couch CG Larson DR Bedard NA Berry DJ Lewallen DG Abdel MP
Full Access

Cup-cage constructs are one of several methods commonly used to treat severe acetabular bone loss during contemporary revision total hip arthroplasty. The purpose of this study was to provide a long-term results of the technique with emphasis on implant survivorship, radiographic results, and clinical outcomes for both full and half cup-cage reconstructions. We identified 57 patients treated with a cup-cage reconstruction for major acetabular bone loss between 2002–2012. All patients had Paprosky Type 2B through 3B bone loss, with 60% having an associated pelvic discontinuity. Thirty-one patients received a full cup-cage construct, and 26 a half cup-cage. Mean age at reconstruction was 66 years, 75% were female, and the mean BMI was 27 kg/m. 2. Mean follow-up was 10 years. The 10-year cumulative incidences of any revision were 14% and 12% for the full and half cup-cage construct groups, respectively. Of the 9 revisions, 3 were for dislocation, 2 for aseptic loosening and construct failure (both were pelvic discontinuities), 1 for adverse local tissue reaction, and 1 for infection with persistent pelvic discontinuity. The 10-year cumulative incidences of revision for aseptic loosening were 4.5% and 5% for the full and half cup-cage constructs, respectively. Of the unrevised cases, incomplete and non-progressive zone 3 radiolucent lines were observed in 10% of patients in each group. Three patients experienced partial motor and sensory sciatic nerve palsies (2 in the full and 1 in the half cup-cage group). Both the full and half cup-cage cohorts demonstrated significantly improved Harris hip scores. Full and half cup-cage reconstructions for major acetabular defects were successful at 10 years in regards to acetabular fixation without appreciable differences between the two techniques. However, zone 3 radiolucent lines were not uncommon in association with discontinuities, and dislocation continues to be a problem


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. Methods. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction. Results. The five-year all-cause survival for cup-cage reconstruction was 73.4% (95% confidence interval (CI) 61.4 to 85.4), while the ten- and 15-year survival was 63.7% (95% CI 46.8 to 80.6). Survival due to aseptic loosening was 93.4% (95% CI 86.2 to 100.0) at five, ten, and 15 years. The rate of revision for aseptic loosening, infection, and dislocation was 3/53 (5.7%), 7/53 (13.2%), and 6/53 (11.3%), respectively. The mean leg length discrepancy improved (p < 0.001) preoperatively from a mean of 18.2 mm (0 to 80; SD 15.8) to 7.0 mm (0 to 35; SD 9.8) at latest follow-up. The horizontal and vertical hip centres improved (p < 0.001) preoperatively from a mean of 9.2 cm (5.6 to 17.5; SD 2.3) to 10.1 cm (6.2 to 13.4; SD 2.1) and 9.3 cm (4.7 to 15.8; SD 2.5) to 8.0 cm (3.7 to 12.3; SD 1.7), respectively. Conclusion. Cup-cage reconstruction provides acceptable outcomes in the management of pelvic discontinuity. One in four constructs undergo revision within five years, most commonly for periprosthetic joint infection, dislocation, or aseptic loosening. Cite this article: Bone Joint J 2024;106-B(5 Supple B):66–73


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results. Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used. A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects. . This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. Methods. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis. Results. A total of 105 procedures were carried out in 100 patients (five bilateral) with a mean age of 73 years (42 to 94). In the IIIA defects treated, 72.0% (36 of 50) required a porous metal augment; the remaining 14 patients were treated with a hemispherical acetabular component alone. In the IIIB defects, 63.6% (35 of 55) underwent reconstruction as planned with 20 patients who actually required a hemispherical acetabular component alone. At mean follow-up of 7.6 years, survival was 94.3% (95% confidence interval 97.4 to 88.1) for all-cause revision and the overall dislocation rate was 3.8% (4 of 105). There was no difference observed in survival between type IIIA and type IIIB defects and whether a hemispherical implant alone was used for the reconstruction or not. The mean gain in OHS was 16 points. Custom-made implants were only used in six cases, in patients with either a mega-defect in which the anteroposterior diameter > 80 mm, complex pelvic discontinuity, and massive bone loss in a small pelvis. Conclusion. Our findings suggest that a reconstruction algorithm can provide a successful approach to reconstruction in major acetabular bone loss. The use of custom implants has been defined in this series and accounts for < 5% of cases. Cite this article: Bone Joint J 2024;106-B(5 Supple B):47–53


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 195 - 200
1 Feb 2014
Abolghasemian M Tangsaraporn S Drexler M Barbuto R Backstein D Safir O Kuzyk P Gross A

The use of ilioischial cage reconstruction for pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer, Warsaw, Indiana) cup-cage technique in our institution, due to the unsatisfactory outcome of using a cage alone in this situation. We report the outcome of 26 pelvic discontinuities in 24 patients (20 women and four men, mean age 65 years (44 to 84)) treated by the cup-cage technique at a mean follow-up of 82 months (12 to 113) and compared them with a series of 19 pelvic discontinuities in 19 patients (18 women and one man, mean age 70 years (42 to 86)) treated with a cage at a mean follow-up of 69 months (1 to 170). The clinical and radiological outcomes as well as the survivorship of the groups were compared. In all, four of the cup-cage group (15%) and 13 (68%) of the cage group failed due to septic or aseptic loosening. The seven-year survivorship was 87.2% (95% confidence interval (CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84) for the cage-alone group (p = 0.009). There were four major complications in the cup-cage group and nine in the cage group. Radiological union of the discontinuity was found in all successful cases in the cup-cage group and three of the successful cage cases. Three hips in the cup-cage group developed early radiological migration of the components, which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating pelvic discontinuity in mid-term follow-up and is preferred to ilioischial cage reconstruction. If the continuity of the bone graft at the discontinuity site is not disrupted, early migration of the components does not necessarily result in failure. Cite this article: Bone Joint J 2014;96-B:195–200


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 82 - 82
1 Dec 2016
Greidanus N Garbuz D Konan S Duncan C Masri B
Full Access

Revision surgery for pelvic discontinuity in the presence of bone loss is challenging. The cup-cage reconstruction option has become popular for the management of pelvic discontinuity in the recent years. The aim of this study was to review the clinical, radiological and patient reported outcomes with the use of cup cage construct for pelvic discontinuity at our institution. Twenty-seven patients (27 cup-cage reconstructions) were identified at median 6-year (minimum 2 year, maximum 10 years) follow up. Eight were female patients. The median age was 77 years [mean 72, range 37–90, SD 13.6]. There were 5 deaths and 2 were lost to follow up. Two patients were converted to excision arthroplasty; one for infection and one for failure of the construct. A further 3 patients required revision for instability but the cup cage construct was not revised (2 revisions of cemented cups to a constrained cup and one revision of proximal modular component of the femoral prosthesis). Revision of the cup cage construct was not necessary in any of these cases. We noted excellent pain relief (mean WOMAC pain 85.6) and good functional outcome (mean WOMAC function 78.2, mean UCLA 5, mean OHS 78.6). Patient satisfaction with regards pain relief; function and return to activities were noted to be excellent. Radiological changes were noted in further 4 patients (cup migration in one case; fracture of ischial spike in one case and breakage of the cage screws in 2 patients). No migration of the construct was noted in any of the cases. In conclusion, the cup cage construct is an excellent method of dealing with complex pelvic discontinuity. Our study suggests a low failure rate; high patient satisfaction and pain relief and moderate functional outcome at median 6 year follow up


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 101 - 101
1 Aug 2017
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. (A). Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture, This reconstruction is used in young patients where restoration of bone stock is important. (B). Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C). Cup-Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup-cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity. Acetabular bone loss and presence of pelvic discontinuity were assessed according to the Gross classification. Sixty-seven cup-cage procedures with an average follow-up of 74 months (range, 24–135 months; SD, 34.3) months were identified; 26 of 67 (39%) were Gross Type IV and 41 of 67 (61%) were Gross Type V (pelvic discontinuity). Failure was defined as revision surgery for any cause, including infection. The 5-year Kaplan-Meier survival rate with revision for any cause representing failure was 93% (95% confidence interval, 83.1–97.4), and the 10-year survival rate was 85% (95% CI, 67.2–93.8). The Merle d'Aubigné-Postel score improved significantly from a mean of 6 pre-operatively to 13 post-operatively (p < 0.001). Four cup-cage constructs had non-progressive radiological migration of the ischial flange and they remain stable


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 909 - 914
1 Jul 2018
Sheth NP Melnic CM Brown N Sporer SM Paprosky WG

Aims

The aim of this study was to examine the results of the acetabular distraction technique in achieving implantation of a stable construct, obtaining biological fixation, and producing healing of chronic pelvic discontinuity at revision total hip arthroplasty.

Patients and Methods

We identified 32 patients treated between 2006 and 2013 who underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction, and who were radiographically evaluated at a mean of 62 months (25 to 160). Of these patients, 28 (87.5%) were female. The mean age at the time of revision was 67 years (44 to 86). The patients represented a continuous series drawn from two institutions that adhered to an identical operative technique.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims

It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients.

Patients and Methods

A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 68 - 72
1 Jan 2016
Goodman GP Engh Jr CA

The custom triflange is a patient-specific implant for the treatment of severe bone loss in revision total hip arthroplasty (THA). Through a process of three-dimensional modelling and prototyping, a hydroxyapatite-coated component is created for acetabular reconstruction. There are seven level IV studies describing the clinical results of triflange components. The most common complications include dislocation and infection, although the rates of implant removal are low. Clinical results are promising given the challenging problem. We describe the design, manufacture and implantation process and review the clinical results, contrasting them to other methods of acetabular reconstruction in revision THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):68–72.