Advertisement for orthosearch.org.uk
Results 1 - 20 of 37
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 2 - 2
1 Jul 2014
Gao B Angibaud L
Full Access

Summary Statement. The constraint behavior of total knee arthroplasty (TKA) prosthesis usually has to be physically tested. This study presents a computer simulation model using finite element analysis (FEA) and demonstrates its effectiveness in predicting the femorotibial constraint behavior of TKA implants. Introduction. TKA prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint cannot be excessive or too lax. To assess the constraint behavior of a TKA prosthesis, physical testing is usually required, and an industrial test standard has been developed for this purpose. Benefiting from technological advancement, computer simulation has become increasingly useful in many industries, including medical device research and development. FEA has been extensively used in stress analysis and structural evaluation of various orthopaedic implants. This study presented an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating it through physical testing. Methods. A Cruciate Retaining (CR) TKA prosthesis design (Optetrak Logic CR, size 3, Exactech, FL, USA) was used in this study. The prosthesis system consists of a femoral component, a tibial insert, and a tibial baseplate. CAD models of the implants assembled at 0° of flexion were used for the simulation. Finite element models were generated using 10-node tetrahedral elements, with all materials considered linear elastic. Boundary conditions were set up according to the ASTM F1223 standard. The tibial baseplate was fixed distally. A constant compressive force (710 N) was applied on the femoral component. Nonlinear Surface-Surface-Contact was defined at the femorotibial articulating surfaces as well as between the tibial insert and tibial baseplate. A coefficient of friction of 0.2 determined from the physical test was input into the simulation. The femoral component was driven under a displacement-controlled scheme to slide along the anterior-posterior (AP) direction on the tibial insert. At each time step, constraint force occurring at the articulating surface was derived from the reaction force at the distal fixation of the tibial baseplate. The force-displacement curve was plotted by combining the results of all time steps to characterize the constraint behavior of the prosthesis. A nonlinear FEA solver (NX Nastran SOL601, Siemens, TX, USA) was used to solve the simulation. In addition, five samples of the prostheses were physically tested per ASTM F1223. Simulation results were compared to the physical testing. Results. The simulation successfully captured the movement of contact location and pressure along the movement of the femoral component. The force-displacement curve predicted by the simulation exhibited a very close hysteresis loop profile as the results of physical testing. Using the curve slope from 0 to 5 mm to characterise the constraint in the most relevant displacement range, the simulation predicted 45.7 N/mm anteriorly and 36.4 N/mm posteriorly, which are less than 10% different from the physical testing results (46.4 N/mm anteriorly and 39.6 N/mm posteriorly). Discussion/Conclusion. This study demonstrated that the simulation was able to closely predict the femorotibial constraint behavior of the TKA prosthesis under ASTM F1223 testing. The simulation results resembled the physical test results not only in the general profile of the curve but also in the magnitude of slope values. The increased difference at the far anterior region could be related to the fact that no material nonlinearity was considered in the current simulation, a factor that could be improved in future studies. A validated simulation method could be very useful in TKA prosthesis design. Since no physical prototypes are required, design evaluation and optimization can be achieved in a much easier and faster manner


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 1 - 1
1 Jul 2014
Gao B Angibaud L
Full Access

Summary Statement. Femorotibial constraint is a key property of a total knee arthroplasty (TKA) prosthesis and should reflect the intended function of the device. With a validated simulation methodology, this study evaluated the constraint of two TKA prostheses designed for different intentions. Introduction. TKA prostheses are semi-constrained artificial joints. Femorotibial constraint level is a major property of a prosthesis and should be designed to match the device's intended function. Cruciate Retaining (CR) prostheses are usually indicated for patients with a functioning posterior cruciate ligament (PCL). For patients without a fully functioning PCL, CR-Constrained (CRC) prostheses with additional built-in constraint may be indicated. A CRC prosthesis usually consists of a CR femoral component and a tibial insert which has a more conforming sagittal profile to offer an increased femorotibial constraint. This study evaluated the anterior-posterior (AP) constraint behavior of two lines of prostheses (CR and CRC) from a same TKA product family. Using a validated computer simulation approach, multiple sizes of each product line were evaluated. Methods. Both the CR and CRC prostheses are from the same TKA product family (Optetrak Logic, Exactech, FL, USA) and share identical femoral components and tibial baseplates. The CRC tibial inserts have a more conforming sagittal profile than the CR tibial inserts, especially in the anterior aspect. Three sizes (sizes 1, 3, and 5) from each product line were included in this study. Computer simulations using finite element analysis (FEA) were performed to evaluate the femorotibial constraint of each prosthesis per ASTM F1223 standard [1]. The simulation has been validated by comparison with physical testing (more details submitted in a separate paper to CORS 2013). Briefly, FEA models were created using 10-node tetrahedral elements with all materials considered linear elastic. The tibial baseplate was distally fixed and a constant compressive force (710 N) was applied to the femoral component. Nonlinear Surface-Surface-Contact was established at the articulating surfaces, as well as between the tibial insert and the tibial baseplate. A coefficient of friction of 0.1 was assumed for all articulations [2]. The femoral component was driven under a displacement-controlled scheme to slide along AP direction on the tibial insert. Constraint force occurring at the articulation was derived from the reaction force at the distal fixation; thus, the force-displacement curve can be plotted to characterise the constraint behavior of the prosthesis. A nonlinear FEA solver (NX Nastran SOL601, Siemens, TX, USA) was used to solve the simulations. Results. The force-displacement curves predicted by the simulation exhibited the hysteresis loop appearance for both CR and CRC prostheses. The profile of the curves was generally consistent across different sizes for both product lines. The anterior constraint of the CRC prosthesis was significantly greater than the CR prosthesis. The posterior constraint of the CRC prosthesis was also slightly greater. Larger sizes exhibited reduced constraint compared to smaller sizes. Discussion/Conclusion. The increased constraint of the CRC prosthesis revealed in the study is consistent with the geometrical characteristics and the functional intent of the device. The CRC tibial insert is expected to provide significantly greater anterior constraint than the CR prosthesis to prevent paradoxical femoral translation when the patient's PCL is not fully functioning. The CRC tibial insert is also expected to provide slightly increased posterior constraint due to its elevated posterior lip. The observed hysteresis loop appearance is consistent with physical testing and the existence of friction. The reduced constraint on larger sizes is functionally desirable to offer proportional translation freedom. This study demonstrated the effectiveness of the simulation approach in quantifying the constraint behavior of different TKA prosthesis designs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 60 - 60
11 Apr 2023
Chalak A Kale S Mehra S Gunjotikar A Singh S Sawant R
Full Access

Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of soft-tissue injury, degree of microbial contamination, and whether systemic and/or local antimicrobial therapies have been administered. Untreated, infection will ultimately lead to non-union, chronic osteomyelitis, or amputation. We report a case series of 10 patients that presented with post-operative infected non-union of the distal femur with or without prior surgery. The cases were performed at Padmashree Dr. D. Y. Patil Hospital, Nerul, Navi Mumbai, India. All the patients’ consents were taken for the study which was carried out in accordance with the Helsinki Declaration. The methodology involved patients undergoing a two-stage procedure in case of no prior implant or a three-stage procedure in case of a previous implant. Firstly, debridement and implant removal were done. The second was a definitive procedure in form of knee arthrodesis with ring fixator and finally followed by limb lengthening surgery. Arthrodesis was planned in view of infection, non-union, severe arthritic, subluxated knee, stiff knee, non-salvage knee joint, and financial constraints. After all the patients demonstrated wound healing in 3 months along with good radiographic osteogenesis at the knee arthrodesis site, limb lengthening surgeries by tibial osteotomy were done to overcome the limb length discrepancy. Distraction was started and followed up for 5 months. All 10 patients showed results with sound knee arthrodesis and good osteogenesis at the osteotomy site followed by achieving the limb length just 1-inch short from the normal side to achieve ground clearance while walking. Our case series is unique and distinctive as it shows that when patients with infected nonunion of distal femur come with the stiff and non-salvage knee with severe arthritic changes and financial constraints, we should consider knee arthrodesis with Ilizarov ring fixator followed by limb lengthening surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 102 - 102
11 Apr 2023
Mosseri J Lex J Abbas A Toor J Ravi B Whyne C Khalil E
Full Access

Total knee and hip arthroplasty (TKA and THA) are the most commonly performed surgical procedures, the costs of which constitute a significant healthcare burden. Improving access to care for THA/TKA requires better efficiency. It is hypothesized that this may be possible through a two-stage approach that utilizes prediction of surgical time to enable optimization of operating room (OR) schedules. Data from 499,432 elective unilateral arthroplasty procedures, including 302,490 TKAs, and 196,942 THAs, performed from 2014-2019 was extracted from the American College of Surgeons (ACS) National Surgical and Quality Improvement (NSQIP) database. A deep multilayer perceptron model was trained to predict duration of surgery (DOS) based on pre-operative clinical and biochemical patient factors. A two-stage approach, utilizing predicted DOS from a held out “test” dataset, was utilized to inform the daily OR schedule. The objective function of the optimization was the total OR utilization, with a penalty for overtime. The scheduling problem and constraints were simulated based on a high-volume elective arthroplasty centre in Canada. This approach was compared to current patient scheduling based on mean procedure DOS. Approaches were compared by performing 1000 simulated OR schedules. The predict then optimize approach achieved an 18% increase in OR utilization over the mean regressor. The two-stage approach reduced overtime by 25-minutes per OR day, however it created a 7-minute increase in underutilization. Better objective value was seen in 85.1% of the simulations. With deep learning prediction and mathematical optimization of patient scheduling it is possible to improve overall OR utilization compared to typical scheduling practices. Maximizing utilization of existing healthcare resources can, in limited resource environments, improve patient's access to arthritis care by increasing patient throughput, reducing surgical wait times and in the immediate future, help clear the backlog associated with the COVID-19 pandemic


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 53 - 53
4 Apr 2023
Hipps D Dobson P Warren C Russell O Turnbull D Deehan D Lawless C
Full Access

We have developed a novel technique to analyse bone, using imaging mass cytometry (IMC) without the constraints of using immunofluorescent histochemistry. IMC can measure the expression of over 40 proteins simultaneously, without autofluorescence. We analysed mitochondrial respiratory chain (RC) protein deficiencies in human bone which are thought to contribute to osteoporosis with increasing age. Osteoporosis is characterised by reduced bone mineral density (BMD) and fragility fractures. Humans accumulate mitochondrial mutations and RC deficiency with age and this has been linked to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of 30 onwards, coincidently the age BMD begins to decline. Mitochondria contain their own genome which accumulates somatic variants at around 10 times the rate of nuclear DNA. Once these mutations exceed a threshold, RC deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model expresses a proof-reading deficient version of PolgA, a mtDNA polymerase. These mice accumulate mutations 3-5 times higher than wild-type mice showing enhanced levels of age-related osteoporosis and RC deficiency in osteoblasts. Bone samples were analysed from young and old patients, developing a protocol and analysis framework for IMC in bone tissue sections to analyse osteoblasts in-situ for RC deficiency. Samples from the femoral neck of 10 older healthy volunteers aged 40 – 85 were compared with samples from young patients aged 1-19. We have identified RC complex I defect in osteoblasts from 6 of the older volunteers, complex II defects in 2 of the older volunteers, complex IV defect in just 1 older volunteer, and complex V defect in 4 of the older volunteers. These observations are consistent with the PolgD257A/D257A mouse-model and suggest that RC deficiency, due to age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 32 - 32
1 Jan 2019
Liu A Ingham E Fisher J Jennings LM
Full Access

A pre-clinical experimental simulation model has been previously successfully developed, and was shown to have the potential for investigation of the biomechanical and tribological performance of early stage knee therapies. In order to investigate interventions that may necessitate sacrifice of the natural ligaments, it is necessary to replicate their function. This study investigated the most effective spring constraint conditions for the porcine knee model with the aim of replicating the natural ligament function. The replication of natural ligament function was achieved through the use of physical springs in the anterior-posterior (AP) axis. Spring-9 (9 N/mm) and spring-20 (20 N/mm) were set at different free lengths in a natural knee simulator. The A/P displacement and shear force outputs from porcine knee samples (N=6) were measured and the most appropriate spring setting was determined by comparing the outputs at different spring settings with intact knee. The A/P displacement of both spring-9 and spring-20 showed similar shapes to the all ligament control. Spring-9 with a free length of 4 mm and spring-20 with a free length of 5 mm showed minimal differences in A/P displacement output compared to the all ligament controls. There was no statistical difference between the two minimal differences either in A/P displacement or in shear force (paired t-test, p>0.05), which indicated that both conditions were appropriate spring constraint settings for the natural porcine knee model. A porcine knee simulation model with refined spring constraint conditions was successfully developed in this study. Human knee model is currently under investigation using the methodology developed in porcine knee model, which will be more appropriate to investigate the effect of early stage knee therapies on the tribological function of the natural knee


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 87 - 87
1 Nov 2021
Muriuki MG
Full Access

Some activities of daily living require that the head be kept level during axial rotation of the cervical spine (Kinematically Constrained Axial Rotation). One such activity is looking over one's shoulder when walking or driving. The kinematic constraint of keeping the head level during axial rotation means that the segmental axis of rotation may not be aligned with the global axis of rotation of the cervical spine. Most of the literature on cervical spine axial rotation is based on experiments where the segmental axis of rotation is aligned with the global axis of rotation (Traditional Axial Rotation). There are only a few clinical and biomechanical studies that have examined kinematically constrained cervical axial rotation. We performed a series of biomechanical experiments in which we tested cervical spines in traditional and kinematically constrained axial rotation. The resulting primary and coupled motions of the segments showed that kinematically constrained axial rotation is distinct from traditional axial rotation. Our findings and the findings of other kinematically constrained axial rotation studies will be compared and contrasted with data from traditional axial rotation studies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 81 - 81
1 Mar 2021
Roth AK Willem PC van Rhijn LW Arts JJ Ito K van Rietbergen B
Full Access

Currently, between 17% of patients undergoing surgery for adult spinal deformity experience severe instrumentation related problems such as screw pullout or proximal junctional failure necessitating revision surgery. Cables may be used to reinforce pedicle screw fixation as an additive measure or may provide less rigid fixation at the construct end levels in order to prevent junctional level problems. The purpose of this study is to provide insight into the maximum expected load during flexion in UHMWPE cable in constructs intended for correction of adult spine deformity (degenerative scoliosis) in the PoSTuRe first-in-man clinical trial. Following the concept of toppinoff, a new construct is proposed with screw/cable fixation of rods at the lower levels and standalone UHMWPE cables at the upper level (T11). A parametric FE model of the instrumented thoracolumbar spine, which has been previously validated, was used to represent the construct. Pedicle screws are modeled by assigning a rigid tie constraint between the rod and the lamina of the corresponding spinal level. Cables are modeled using linear elastic line elements, fixing the rod to the lamina medially at the cranial laminar end and laterally at the caudal laminar end. A Youngs modulus was assigned such that the stiffness of the line element was the same as that of the cable. An 8 Nm flexion moment was applied to the cranial endplate. The maximum value of the force in the wire (80 N) is found at the T11 (upper) level. At the other levels, forces in the cable are very small because most of the force is carried by the screw (T12) or because the wires are force shielded by the contralateral and adjacent level pedicle screws (L2, L3). The model provides first estimates of the forces that can be expected in the UHMWPE cables in constructs for kyphosis correction during movement. It is expected that this approach can help in defining the number of wires for optimal treatment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 54 - 54
1 Nov 2018
Risbud M
Full Access

A defining characteristic of the Nucleus Pulposus (NP) and the inner AF is the very limited vascular supply and low pH that imposes metabolic constraints on the disc cells. Interference with the normal physiology of the NP niche, by activities linked to changes in oxygen diffusion across the endplate leads to dysregulated niche function. Hypoxia Inducible Factor-1 (HIF-1) and HIF-2 are robustly and constitutively expressed by cells of the NP. Our recent work has shown that expression of HIF-1 is indispensable for NP cell survival in vivo and suggests an important role of HIF-1 in NP cell metabolic program. This talk will discuss central role of HIF-1 as metabolic and pH homeostatic regulator of NP cells and possible implication for a therapeutic strategy to treat disc degeneration


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 84 - 84
1 Aug 2012
MacLeod A Pankaj P Simpson H
Full Access

Finite element modelling is being extensively used to evaluate the biomechanical behaviour of fractured bone treated with fixation devices. Appropriate modelling of the bone-implant interface is key to quality biomechanical prediction. The present study considers this interface modelling in the context of locking plates. A majority of previous studies assume the interface to be represented by a tied constraint or a fully bonded interface. Many other studies incorporate a frictional interface but ignore screw threads. This study compares the various interface modelling strategies. An interface with screw threads explicitly included is also considered. The study finds that interface modelling has significant impact on both the global and local behaviour. Globally, the load-deflection behaviour shows considerable difference depending on the interface model. Locally, the stress-strain environment within the bone close to the screws is significantly altered. The results show that the widely used tie constraint can overestimate stiffness of a construct which must be correctly predicted to avoid non-union or periprosthetic re-fracture, especially in osteoporotic bone. In addition, the predictions of screw loosening, bone damage and stress shielding are very different when screw threads are included in the model


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 123 - 123
1 Nov 2018
Lenguerrand E Whitehouse M Beswick A Kunutsor S Porter M Blom A
Full Access

Periprosthetic joint infections (PJIs) are uncommon but are devastating complications of total knee replacement (TKR). We analysed the risk factors of revision for PJI following primary TKR and their association with PJI at different post-operative periods. Primary TKRs and subsequent revision surgeries performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Multilevel piece-wise exponential non-proportional hazards models were used to estimate the effect of the investigated factors at different post-operative periods. Patient, perioperative and healthcare system characteristics were investigated and data from the Hospital Episode Statistics for England were linked to obtain information on specific comorbidities. The index TKRs consisted of 679,010 primaries with 3,659 subsequently revised for PJI, 7% within 3 months, 6% between 3–6months, 17% between 6–12months, 27% between 1–2years and 43% ≥2 years from the index procedure. Risk factors for revision for PJI included male sex, high BMI, high ASA grade and young age. Patients with chronic pulmonary disease, diabetes and liver disease had higher risk of revision for PJI, as had patients who had a primary TKR for an indication of trauma or inflammatory arthropathy. Surgical procedure, fixation method, constraint and bearing type influenced the risk of revision for PJI. Their effects were period-specific. No or small associations were found with the operating surgeon grade, surgical volume and hospital surgical volume. These findings from the world's largest joint replacement registry show a more complex picture than the meta-analyses published to date with specific time-dependent effects for the identified risk factors


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 52 - 52
1 Jul 2014
Garner P Wilcox R Aaron J
Full Access

Summary Statement. Prophylactic vertebroplasty treatment of ‘at-risk’ vertebrae may reduce fracture risk, however which areas weaken, thus providing surgical targets? Direct spatial 3D mapping of ReTm overcomes the constraints of 2D histology, and by application may provide insight into specific regional atrophy. Introduction. Insidious bone loss with age makes the skeleton fracture-prone in the rapidly expanding elderly population. Diagnosis of osteoporosis is often made after irreversible damage has occurred. There are over 300,000 new fragility fractures annually in the UK, more than 120,000 of these being vertebral compression fractures (VCF). Some VCFs cause life-altering pain, requiring surgical intervention. Vertebroplasty is a minimally invasive procedure whereby bone cement is injected into the damaged vertebral body with the aim of stabilisation and pain alleviation. However, vertebroplasty can alter the biomechanics of the spine, apparently leaving adjacent vertebrae with an increased VCF risk. Prophylactic augmentation of intact, though ‘at-risk’, vertebrae may reduce the risk of adverse effects. The question therefore arises as to which areas of a non-fractured vertebral body, structurally weakened with age, and thus should be targeted. Frequent reports of an overlap in BMD (bone mineral density) between fracture and non-fracture subjects suggest the combination of bone quantity and its ‘quality’ (microarchitectural strength) may be a more reliable fracture predictor than BMD alone. Providing a reliable method of cancellous connectivity measurement (a highly significant bone strength factor) is challenging. Traditional histological methods for microarchitectural interconnection are limited as they usually indirectly extrapolate 3D structure from thin (8 µm) 2D undecalcified sections. To address this difficulty, Aaron et al (2000) developed a novel, thick (300 µm) slicing and superficial staining procedure, whereby unstained real (not stained planar artifactual) trabecular termini (ReTm) are identified directly within their 3D context. The aim of this study was to automate a method of identifying trabecular regions of weakness in vertebral bodies from ageing spines. Patients and methods. 27 Embalmed cadaveric vertebral bodies (T10-L3) from 5 women (93.2±8.6 years) and 3 men (90±4.4 years) were scanned by µCT (micro-computerised tomography; µCT80, Scanco Medical, Switzerland, 74 µm voxel size), before plastic-embedding, slicing (300µm thick), and surface-staining with the von Kossa (2% silver nitrate) stain. The ReTm were mapped using light microscopy, recording their coordinates using the integrated stage, mapping them within nine defined sectors to demonstrate any apparent loci of structural disconnectivity that may cause weakness disproportionate to the bone loss. A transparent 3D envelope corresponding to the cortex, was constructed using code developed in-house (Matlab 7.3, Mathworks, USA), and was modulated and validated by overlay of the previous µCT scan and the coordinate data. Results. The ReTm distribution was found to be remarkably heterogeneous (p<0.05) and independent of the bone volume (p<0.05). For example, there was preliminary evidence of central endplate disconnection predominantly in the selected preparations. Discussion/Conclusion. Such automated spatial mapping of the ReTm within a 3D framework overcomes the constraints of 2D histology. By application of this new automated method, patterns of trabecular disconnection in the spine may now provide insight into specific regional atrophy, perhaps explaining why some vertebrae fracture while others with the same BMD do not, and indicating better targets for prophylactic vertebroplasty


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 46 - 46
1 Apr 2018
Woiczinski M Ingr K Steinbrück A Weber P Schröder C Müller PE Jansson V
Full Access

Wear is an important factor in the long term success of total knee arthroplasty. Therefore, wear testing methods and machines become a standard in research and implant development. These methods are based on two simulation concepts which are defined in standards ISO 14243-1 and 14243-3. The difference in both concepts is the control mode. One is force controlled while the other has a displacement controlled concept. The aim of this study was to compare the mechanical stresses within the different ISO concepts. Furthermore the force controlled ISO was updated in the year 2009 and should be compared with the older which was developed in 2001. A finite element model based on the different ISO standards was developed. A validation calculated with kinematic profile data of the same implant (Aesculap, Columbus CR) in an experimental wear test setup (Endolap GmbH) was done. Based on this model all three different ISO standards were calculated and analysed. Validation results showed Pearson correlation for anterior posterior movement of 0.3 and for internal external rotation 0.9. Two main pressure maximums were present in ISO 14243-1:2001 (force controlled) with 17.9 MPa and 13.5 MPa for 13 % and 48 % of the gait cycle. In contrast ISO 14243-1:2009 (force controlled) showed three pressure maximums of 18.5 MPa (13 % of gait cycle), 16.4 MPa (48 % of gait cycle) and 13.2 MPa (75 % of gait cycle). The displacement controlled ISO (14243-3:2014) showed two pressure maximums of 16.0 MPa (13 % of gait cycle) and 17.2 MPa (48 % of gait cycle). The adapted force controlled ISO of the year 2009 showed higher mechanical stress during gait cycle which also might lead to higher wear rates. The displacement controlled ISO leads to higher mechanical stress because of the constraint at the end of the stance phase of the gait cycle. Future studies should analyse different inlay designs within these ISO standards


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 109 - 109
1 Jan 2017
van Hamersveld K Valstar E Toksvig-Larsen S
Full Access

Whether it is best to retain the posterior cruciate ligament in the degenerated knee, i.e. using a cruciate-retaining (CR) total knee prosthesis (TKP), or to use a more constraint posterior-stabilized (PS) TKP is of debate. There are limited studies comparing the effect of both methods on implant fixation and clinical outcome, leaving it up to the surgeon to base this decision on anything but conclusive evidence. We assessed the effect of two different philosophies in knee arthroplasty on clinical outcome and tibial component migration measured with radiostereometric analysis (RSA), by directly comparing the CR and PS version of an otherwise similarly designed cemented TKP. Sixty patients were randomized and received a Triathlon TKP (Stryker, NJ, USA) of either CR (n=30) or PS (n=30) design. RSA measurements (primary outcome) and clinical scores including the Knee Society Score and Knee injury and Osteoarthritis Outcome Score were evaluated at baseline, at three months postoperatively and at one, two, five and seven years. A linear mixed-effects model was used to analyse the repeated measurements. Both groups showed a similar implant migration pattern, with a maximum total point motion at seven years follow-up of around 0.8 mm of migration (mean difference between groups 95% CI −0.11 to 0.15mm, p=0.842). Two components (one of each group) were considered to have an increased risk of aseptic loosening. Both groups improved equally after surgery on the KSS and KOOS scores and no differences were seen during the seven years of follow-up. No differences in implant migration nor clinical results were seen seven years after cruciate-retaining compared to posterior-stabilized total knee prostheses


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 33 - 33
1 Apr 2017
Barlow T Griffin D Scott P Realpe A
Full Access

Background. Knee replacement surgery is currently facing three dilemmas: a high dissatisfaction rate; increasing demand with financial constraints; and variation in utilisation. A patient centred approach, usually achieved through shared decision-making, has the potential to help address these dilemmas. However, such an approach requires an understanding of the factors involved in patient decision-making. This is the first study examining decision-making in knee replacements that includes patients at different stages of decision-making – this is critical when considering decision-making as a process. We base our findings in a theoretical model, proposed by Elwyn et al, that highlights the distinction between deliberation and decision-making, and propose modifications to this model specific to knee replacement decision-making. Methods. This study used two focus groups of six patients each and in-depth interviews with 10 patients to examine the factors that affect patient decision-making and their interaction at different points in the decision-making process. A qualitative analysis of themes, based on a constant comparative method, is used to analyse the data. This study was approved by the Dyfed Powys Research Ethics Committee (13/WA/0140). Results. We describe 10 themes that affect patient deliberation over the decision: decision-making style; coping strategies; expectation of outcome; decision-making stress; personal situation; preferred model of care; trust in doctor; sources of information; mental state; and loss of control. We add to Elwyn's model by demonstrating the boundary between deliberation and decision-making is the decision-making threshold. Conclusion. This study provides increased detail on a theoretical model that can be used to describe decision-making, and an understanding of the factors that affect decision-making for patients considering knee replacement. Such an understanding will aid patient centred care, and has particular relevance in developing interventions aimed at delivering information. This is likely to affect the satisfaction rate, demand, and utilisation of knee replacements. Level of evidence. 4


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 104 - 104
1 May 2017
Vaughan A Arunachalam H Harold Ayres B Eitel C Rao M
Full Access

Background. Predicting length of stay (LOS) is key to providing a cost effective and efficient arthroplasty service in an era of increasing financial constraint. Previous studies predicting LOS have not considered enhanced recovery protocols in elective hip and knee arthroplasty. Our study aims to identify patient variables in the pre and peri-operative period to predict increased LOS on patients enrolled into the standardised Chichester and Worthing Enhanced Recovery Programme (CWERP). Methods. All patients undergoing elective hip and knee arthroplasty were enrolled into CWERP using standardised anaesthetic, surgical and analgesic protocols. A data analyst prospectively collated data over 6months from anaesthetic charts and daily ward review from 663 patients between Dec 2012 and June 2013. An independent statistician undertook statistical analysis (program R, version 3.1.1). 80% of the 6months consecutive data (530 patients) were analysed, and predictive variables identified. These variables were tested against the remaining 20% of data (133 patients) predicting a LOS greater or less than our median of 4 days. Results. 663 patients were enrolled into CWERP over this period, 54% in hip arthroplasty. Statistical analysis was performed using Chi-squared test for association between actual and predicted (dichotomised) LOS being significant (p<0.0000000017). In the initial 80% (530 patients), this identified the following statistically significant variables in predicting LOS > 4 days: Age > 80 yrs, ASA 4, failure to mobilise on day of surgery, urinary catheterisation and need for blood transfusion. The statistical model when applied to the remaining 20% (133 patients) correctly categorised LOS in 101 (76%) of the patients. Conclusions. Identifying patients who fulfil our variables in the preoperative period affords better planning, maximising resources, bed efficiency and discharge planning. This also provides opportunities for financial remuneration for higher risk patients. Level of Evidence. 4


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 26 - 26
1 Jan 2017
Lenguerrand E Wylde V Brunton L Gooberman-Hill R Blom A Dieppe P
Full Access

Physical functioning in patients undergoing hip surgery is commonly assessed in three ways: patient-reported outcome measure (PROM), performance test, or clinician-administered measure. It is recommended that several types of measures are used concurrently to capture an extended picture of function. Patient fatigue and burden, time, resources and logistical constraints of clinic and research appointments mean that collecting multiple measures is seldom feasible, leading to focus on a limited number of measures, if not a single one. While there is evidence that performance-tests and PROMs do not fully correlate, correlations between PROMs, performance tests and clinician-administrated measures are yet to be evaluated. It is also not known if the associations between function and patient characteristics depend on how function is measured. The aim of our study was to use different measures to assess function in the same group of patients before their hip surgery to determine 1. how well PROMs, performance tests and clinician-administrated measures correlate with one another and 2. Whether these measures are associated with the same patient characteristics. We conducted a cross-sectional analysis of the pre-operative information of 125 participants listed for hip replacement. The WOMAC function subscale, Harris Hip Score (HHS) and walk-, step- and balance-tests were assessed by questionnaire or during a clinic visit. Participant socio-demographics and medical characteristics were also collected. Correlations between functional measures were investigated with correlation coefficients (r). Regression models were used to test the association between the patient's characteristics and each of the three types of functional measures. None of the correlations between the PROM, clinician-administrated measure and performance tests were very high (r<0.90). The highest correlations were found between the WOMAC-function and the HHS (r=0.7) or the Walk-test (r=0.6), and between the HHS and the walk-test(r=0.7). All the other performance-tests had low correlations with the other measures(r ranging between 0.3 and 0.5). The associations between patient characteristics and functional scores varied by type of measure. Psychological status was associated with the WOMAC function (p-value<0.0001) but not with the other measures. Age was associated with the performance test measures (p-value ranging from ≤0.01 to <0.0001) but not with the WOMAC function. The clinician-administered (HHS) measure was not associated with age or psychological status. When evaluating function prior to hip replacement clinicians and researchers should be aware that each assessment tool captures different aspects of function and that patient characteristics should be taken into account. Psychological status influences the perception of function; patients may be able to do more than they think they can do, and may need encouragement to overcome anxiety. A performance test like a walk-test would provide a more comprehensive assessment of function limitations than a step or balance test, although performance tests are influenced by age. For the most precise description of functional status a combination of measures should be used. Clinicians should supplement their pre-surgery assessment of function with patient-reported measure to include the patient's perspective


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 58 - 58
1 Jan 2017
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A Utzschneider S
Full Access

Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants. In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used. Analysis of 12 retrieved EnduRo. ®. RHK systems in cobalt-chromium and ZrN multi-layer in regard to. -. loosening torques in comparison with initial fastening torques. -. Optical, DSLR camera and stereo light microscope analysis. -. distinction between different wear modes and classification with a modified HOOD-score. -. SEM & EDX of representative samples. -. surface roughness and depth profilometry. with a focus on the four CFR-PEEK components integrated in the EnduRo. ®. RHK design. For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm. 3. /million cycles (cobalt-chromium) and 0.21 ± 0.02 mm. 3. /million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating. For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating


Bone & Joint 360
Vol. 10, Issue 4 | Pages 49 - 51
1 Aug 2021
Evans JT Welch M Whitehouse MR