Plantar fasciitis (PF) is one of the widespread conditions causing hindfoot pain. The most common presenting symptoms are functional limitation and pain (first step and activity) on plantar surface of the foot. The non-operative treatments provide complete resolution of pain in 90% of patients, but functional limitation still remains as a risk factor for recurrency of PF. Although the number of non-operative treatment options showing efficacy on pain and functional limitation are excessive, the evidences are limited for functional limitation. Additionally, Mulligan mobilization with movement (MMWM) in Chronic Plantar Fasciitis has been poorly studied in the literature. According to these findings, the study was aimed to determine effectiveness of Mulligan mobilization with movement on Chronic Plantar Fasciitis. A total of 25 patients (40 feet) with chronic PF were included in the study. The patients were randomly divided into Mulligan
Nerve transfer is an emerging treatment to restore upper limb function in people with tetraplegia. The objective of this study is to examine if a flexible collage sheet (FCS) can act as epineurial-like substitute to promote nerve repair in nerve transfer. A preclinical study using FCS was conducted in a rat model of sciatic nerve transection. A prospective case series study of nerve transfer was conducted in patients with C5-C8 tetraplegia who received nerve transfer to restore upper limb function. Motor function in the upper limb was assessed pre-treatment, and at 6-,12-, and 24-months post-treatment. Macroscopic assessment in preclinical model showed nerve healing by FCS without encapsulation or adhesions. Microscopic examination revealed that a new, vascularised epineurium-like layer was observed at the FCS treatment sites, with no evidence of inflammatory reaction or nerve compression. Treatment with FCS resulted in well-organised nerve fibres with dense neurofilaments distal to the coaptation site. Axon counts performed proximal and distal to the coaptation site showed that 97% of proximal axon count of myelinated axons regenerated across the coaptation site after treatment with CND. In the proof of
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating
Introduction and Objective. Digital infra-red thermography may have the capability of identifying local inflammations. Nevertheless, the role of thermography in diagnosing pin site infection has not been explored yet and the reliability and validity of this method for pin site surveillance is in question. The purpose of this study was to explore the capability and intra-rater reliability of thermography in detecting pin site infection. Materials and Methods. This explorative proof of
Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction
Intra-articular injection is a common way to deliver biologics to joints, but their effectiveness is limited by rapid clearance from the joint space. This barrier can be overcome by genetically modifying cells within the joint such that they produce anti-arthritic gene products endogenously, thereby achieving sustained, therapeutic, intra-articular concentrations of the transgene products without re-dosing. A variety of non-viral and viral vectors have been subjected to preclinical testing to evaluate their suitability for delivering genes to joints. The first transfer of a gene to a human joint used an
To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models. A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways). Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies. Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients). 3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa.
BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation. For any figures and tables, please contact the authors directly.
The primary aim was to assess the reliability of ultrasound in the assessment of humeral shaft fracture healing. The secondary aim was to estimate the accuracy of ultrasound assessment in predicting humeral shaft nonunion. Twelve patients (mean age 54yrs [20–81], 58% [n=7/12] female) with a non-operatively managed humeral diaphyseal fracture were prospectively recruited and underwent ultrasound scanning at six and 12wks post-injury. Scans were reviewed by seven blinded observers to evaluate the presence of sonographic callus. Intra- and inter-observer reliability were determined using the weighted kappa and intraclass correlation coefficient (ICC). Accuracy of ultrasound assessment in nonunion prediction was estimated by comparing scans for patients that united (n=10/12) with those that developed a nonunion (n=2/12). At both six and 12wks, sonographic callus was present in 11 patients (10 united, one developed a nonunion) and sonographic bridging callus (SBC) was present in seven patients (all united). Ultrasound assessment demonstrated substantial intra- (6wk kappa 0.75, 95% CI 0.47-1.03; 12wk kappa 0.75, 95% CI 0.46-1.04) and inter-observer reliability (6wk ICC 0.60, 95% CI 0.38-0.83; 12wk ICC 0.76, 95% CI 0.58-0.91). Absence of sonographic callus demonstrated a sensitivity of 50%, specificity 100%, positive predictive value (PPV) 100% and negative predictive value (NPV) 91% in nonunion prediction (accuracy 92%). Absence of SBC demonstrated a sensitivity of 100%, specificity 70%, PPV 40% and NPV 100% (accuracy 75%). Of three patients at risk of nonunion based on reduced radiographic callus formation (Radiographic Union Score for HUmeral fractures <8), one had SBC on 6wk ultrasound (and united) and the other two had non-bridging or absent sonographic callus (both developed a nonunion). Ultrasound assessment of humeral shaft fracture healing was reliable and predictive of nonunion, and may be a useful tool in defining the risk of nonunion among patients with reduced radiographic callus formation.
Knee pain is common, representing a significant socioeconomic burden. Caused by a variety of pathologies, its evaluation in primary-care is challenging. Subsequently, an over-reliance on magnetic resonance imaging (MRI) exists. Prior to orthopaedic surgeon referral, many patients receive no, or incorrect, imaging. Electronic-triage (e-triage) tools represent an innovative solution to address this problem. The primary aim of this study was to ascertain whether an e-triage tool is capable of outperforming existing clinical pathways to determine the correct pre-hospital imaging based on knee pain diagnosis. Patients ≥18 years with a new presentation of knee pain were retrospectively identified. The timing and appropriateness of imaging was assessed. A symptom-based e-triage tool was developed, using the Amazon LEXbotplatform, and piloted to predict five common knee pathologies and suggest appropriate imaging. 1462 patients were identified. 17% of arthroplasty patients received an ‘unnecessary MRI’, whilst 28% of arthroscopy patients did not have a ‘necessary MRI’, thus requiring a follow-up appointment, with a mean delay of three months (SD 2.6, range 0.2-20.2). Using NHS tariffs, a wasted cost through unnecessary/necessary MRIs and subsequent follow-up appointments was estimated at £45,816. The e-triage pilot was trialled with 41 patients (mean age:58.4 years, 58.5% female). Preliminary diagnoses were available for 34 patients. Using the highest proportion of reported symptoms in the corresponding group, the e-triage tool correctly identified three of the four knee pathologies. The e-triage tool did not correctly identify anterior cruciate ligament injuries (n=3). 79.2% of participants would use the tool again. A significant number of knee pathology patients received incorrect imaging prior to their initial hospital appointment, incurring delays and unnecessary costs. A symptom-based e-triage tool was developed, with promising pilot data and user feedback. With refinement, this tool has the potential to improve wait-times and referral quality, whilst reducing costs.
Mechanical loading of joints with osteoarthritis (OA) results in pain-related functional impairment, altered joint mechanics and physiological nociceptor interactions leading to an experience of pain. However, the current tools to measure this are largely patient reported subjective impressions of a nociceptive impact. A direct measure of nociception may offer a more objective indicator. Specifically, movement-induced physiological responses to nociception may offer a useful way to monitor knee OA. In this study, we gathered preliminary data on healthy volunteers to analyse whether integrated biomechanical and physiological sensor datasets could display linked and quantifiable information to a nociceptive stimulus. Following ethical approval, 15 healthy volunteers completed 5 movement and stationary activities in 2 conditions; a control setting and then repeated with an applied quantified thermal pain stimulus to their right knee. An inertial measurement unit (IMU) and an electromyography (EMG) lower body marker set were tested and integrated with ground reaction force (GRF) data collection. Galvanic skin response electrodes for skin temperature and conductivity and photoplethysmography (PPG) sensors were manually timestamped to the integrated system. Pilot data showed EMG, GRF and IMU fluctuations within 0.5 seconds of each other in response to a thermal trigger. Preliminary analysis on the 15 participants tested has shown skin conductance, PPG, EMG, GRFs, joint angles and kinematics with varying increases and fluctuations during the thermal condition in comparison to the control condition. Preliminary results suggest physiological and biomechanical data outputs can be linked and identified in response to a defined nociceptive stimulus. Study data is currently founded on healthy volunteers as a proof-of-concept. Further exploratory statistical and sensor readout pattern analysis, alongside early and late-stage OA patient data collection, can provide the information for potential development of wearable nociceptive sensors to measure disease progression and treatment effectiveness.
Aim. The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Introduction. Placements of the femoral tunnels for ACL reconstruction have changed over the years. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all as it is an average. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint. Materials & Methods. We took a standard protocol MRI scan of a patient's knee without ACL injury transferred the DICOM files to a personal computer running OsiriX (Pixmeo, Geneva, Switzerland.) and analysed it for a series of specific anatomical landmarks. OsiriX is an image processing software dedicated to DICOM images. We marked the most posterior edge of the articular cartilage on the lateral wall of the notch (1), the most anterior edge of the articular cartilage of the lateral wall of the notch (2), the most inferior edge of the articular cartilage of the lateral wall of the notch (3) and the center of the femoral footprint of the native ACL. Distances were then calculated to determine the position relative to the three articular cartilage points of the center of the ACL footprint. These measurements and points were then utilised to create a 3D computer aided design (CAD) model of a custom guide. This was done using the 3D CAD program 123Design (Autodesk Ltd., Farnbourgh, Hampshire). This 3D model was then exported as an STL file suitable for 3D printing. The STL file was then uploaded to an online 3D printing service and the physical guide was created in transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel. The models created were then measured using vernier calipers to confirm the accuracy of the final guides. Results. The MRI data showed point 1 (AP), point 2 (distal-ACL), point 3 (Ant-ACL) and point 4 (Post-ACL) at a distance of 59.83, 15, 45.8 and 13.9 respectively. For the 3D CAD model, points 1, 2, 3 and 4 were at a distance of 59.83, 15, 45.8 and 13.9 respectively. For the PA220 plastic model, points 1, 2, 3 and 4 were at a distance of 59.86, 14.48, 45.85 and 13.79 respectively. For the 316L stainless steel model, points 1, 2, 3 and 4 were at a distance of 59.79, 14.67, 45.64 and 13.48 respectively. Lastly, for the photopolymer model, points 1, 2, 3 and 4 were at a distance of 59.86, 14.2, 45.4 and 13.69 respectively. The p-value comparing MRI/CAD vs. PA220 was p=0.3753; for the comparison between MRI/CAD vs. 316L, p=0.0683; lastly for the comparison between MRI/CAD Vs. Photopolymer, p=0.3450. The models produced were accurate with no statistical difference in size and positioning of the center of the ACL footprint from the original computer model and to the position of the ACL from the MRI scans. The costs for the models 3D printed were £3.50 for the PA220 plastic, £15 for the transparent photopolymer and £25 for the 316L stainless steel. The time taken from MRI to delivery for the physical models was 7 days. Discussion. Articles regarding the creation of 3D printed custom ACL guides from the patients contralateral knee do not feature in current literature. There has been much research on custom guides for other orthopaedic procedures such as in total knee arthroplasty for the accurate placement of implants. There has also been research published on the creation of custom cutting jigs from CT for complex corrective osteotomy surgery. This study serves as the first step and a proof of
The geometry of the proximal tibia and distal femur is intimately linked with the biomechanics of the knee and it is to be considered in total knee arthroplasty (TKA) component positioning. The aim of the present study was to evaluate the proximal tibial torsion in relation to the flexion-extension axis of the knee in healthy and pathological cohort affected by knee osteoarthritis (OA). We retrospectively analyzed computed tomography scans of OA knee of 59 patients prior to TKA and non-arthritic knee of 39 patients as control. Posterior condylar angle (PCA), femoral tibial torsion (TEAs-PTC and TEAs-PTT), proximal tibial torsion (PTC-PTT and PCAx-PTC) and distance between tibial tuberosity and the trochlear groove (TT-TG) were measured.Introduction and Objective
Materials and Methods
In this phase 2 clinical trial (EudraCT 2011-000541-20) we examined the effect of denosumab versus placebo on osteolytic lesion activity in patients undergoing revision surgery after THA. Men and women ≥ 30 years old scheduled for revision surgery for symptomatic, radiologically-confirmed osteolysis were randomised (1:1) to receive either denosumab 60mg or placebo subcutaneously eight weeks prior to operation. At surgery, biopsies from the osteolytic membrane-bone interface were taken for histomorphometric analysis of osteoclast number, the primary outcome measure. Secondary outcome measures included other static histomorphometric indices and systemic bone turnover markers. Adverse events and patient-reported clinical outcome scores were recorded as safety endpoints.Abstract
Objective
Methods
Hip fractures affect 1.6 million people globally per annum, associated with significant morbidity and mortality. A large proportion are extracapsular neck of femur fractures, treated with the dynamic hip screw (DHS). Mechanical failure due to cut-out is seen in up to 7% of DHS implants. The most important predictor of cut-out is the tip-apex distance (TAD), a numerical value of the lag screw”s position in the femoral head. This distance is determined by the psychomotor skills of the surgeon guided by fluoroscopic imaging in theatre. With the current state of surgical training, it is harder for junior trainees to gain exposure to these operations, resulting in reduced practice. Additionally, methods of simulation using workshop bones do not utilise the imaging component due to the associated radiation risks. We present a digital fluoroscopy software, FluoroSim, a realistic, affordable, and accessible fluoroscopic simulation tool that can be used with workshop bones to simulate the first step of the DHS procedure. Additionally, we present the first round of accuracy tests with this software. The software was developed at the Royal National Orthopaedic Hospital, London, England. Two orthogonally placed cameras were used to track two coloured markers attached to a DHS guide-wire. Affine transformation matrices were used in both the anterior-posterior (AP) and cross table lateral (CTL) planes to match three points from the camera image of the workshop bone to three points on a pre-loaded hip radiograph. The two centre points of each marker were identified with image processing algorithms and utilised to digitally produce a line representing the guide-wire on the two radiographs. To test the accuracy of the system, the software generated 3D guide-wire apex distance (GAD) (from the tip of the guide-wire to a marker at the centre of calibration) was compared to the same distance measured with a digital calliper (MGAD). In addition, the same accuracy value was determined in a simulation scenario, from 406 attempts by 67 medical students.Background
Methods
Instability accounts for approximately 20% of all revision total knee arthroplasty (TKA), however diagnostic tests remain crude and subjective. The aim of this examination was to evaluate the feasibility of pressure mat (SB Mat, TekScan) analyses of functional tasks to differentiate instability in a clinical setting. Five patients (M = 4; age = 69.80±7.05 years; weight = 79.73±20.12 kg) with suspected TKA instability were examined compared to five healthy controls (M = 1; age = 46.80±7.85 years; weight = 71.54±16.17 kg). Peak pressure and time parameters were measured during normal gait and two-minute bilateral stance. Side-to-side pressure distribution was calculated over 10-second intervals during the second minute. Pressure distributions were expressed relative to bodyweight (%BW). T-tests compared loading parameters between groups (significance level = p<0.05). Analyses showed subtle differences in pressure distribution in unstable TKA patients versus healthy controls. Stance time during gait was indifferent. TKA patients tended to exhibit longer heel contact time (0.76 vs. 0.64 sec) and reduced weight acceptance (50.75% vs. 56.75%) on the operated versus non-operated limb. Side-to-side differences in toe-off forces were significantly more pronounced in TKA patients versus controls (9.25% vs. 3.75%;
Instability accounts for approximately 20% of revision total knee arthroplasty (TKA) operations, however, diagnostic tests remain relatively subjective. The aim of this examination was to evaluate the feasibility of using pressure mat analyses during functional tasks to identify abnormal biomechanics associated with TKA instability. Five patients (M = 4; age = 69.80±7.05 years; weight = 79.73±20.12 kg) with suspected TKA instability were examined compared to 10 healthy controls (M = 4; age = 44.6±7.52 years; weight = 70.80±14.65). Peak pressure and time parameters were measured during normal gait and two-minute bilateral stance. Side-to-side pressure distribution was calculated over 10-second intervals during the second minute. Mann-Whitney tests compared loading parameters between groups and side-to-side differences in TKA patients (significance level = p<0.05). Pressure distribution was expressed relative to bodyweight. Notable differences were seen during bilateral stance. Uneven side loading was greater – favouring the non-operated limb – in TKA patients during bilateral stance compared to controls. This was significantly different at 30s (p=0.0336) and 60s (p=0.0336). Gait analyses showed subtle pressure distribution differences in unstable TKA patients. Stance time was indifferent. TKA patients tended to exhibit longer heel contact time (0.76s vs. 0.64s and reduced weight acceptance (50.75% vs. 56.75%) on the operated limb compared to the non-operated limb. Side-to-side differences in peak toe-off forces were significantly more pronounced in TKA patients versus controls (9.25% +/− 1.5% vs. 1.67% +/−5.79%; p=0.0039). Conclusion: This feasibility work demonstrates subtle differences in limb loading mechanics during simple clinical tests in unstable TKA patients that might be invisible to the naked eye. In the long-term, pressure analyses may be a useful diagnostic tool in identifying patients that would benefit from revision surgery for TKA instability.
We are taking very expensive cutting edge technology, usually reserved for industry, and using it with the help of open source free software and a cloud 3D printing services to produce custom and anatomically unique patient individual implants for only £32. This is approx. 1/100th of the traditional cost of implant production. 3D printing and rapid prototyping in surgery is an expanding technology. It is often used for preoperative planning, procedure rehearsal and patient education. There have been recent advances in orthopaedic surgery for the development of patient specific guides and jigs. The logical next step as the technology advances is the production of custom orthopaedic implants. Our aim was to use freely available open source software, a personal computer and consumer access online cloud 3D printing services to produce an accurate patient specific orthopaedic implant without utilising specialist expertise, capital expenditure on specialist equipment or the involvement of traditional implant manufacturing companies. This was all to be done quickly, cost effectively and in department.Summary Statement
Introduction
3D imaging is commonly employed in the surgical planning and management of bony deformity. The advent of desktop 3D printing now allows rapid in-house production of specific anatomical models to facilitate surgical planning. The aim of this pilot study was to evaluate the feasibility of creating 3D printed models in a university hospital setting. For requested cases of interest, CT DICOM images on the local NHS Picture Archive System were anonymised and transferred. Images were then segmented into 3D models of the bones, cleaned to remove artefacts, and orientated for printing with preservation of the regions of interest. The models were printed in polylactic acid (PLA), a biodegradable thermoplastic, on the CubeX Duo 3D printer. PLA models were produced for 4 clinical cases; a complex forearm deformity as a result of malunited childhood fracture, a pelvic discontinuity with severe acetabular deficiency following explantation of an infected total hip replacement, a chronically dislocated radial head causing complex elbow deformity as a result of a severe skeletal dysplasia, and a preoperative model of a deficient proximal tibia as a result of a severe tibia fracture. The models materially influenced clinical decision making, surgical intervention planning and required equipment. In the case of forearm an articulating model was constructed allowing the site of impingement between radius and ulnar to be identified, an osteotomy was practiced on multiple models allowing elimination of the block to supination. This has not previously been described in literature. The acetabulum model allowed pre-contouring of a posterior column plate which was then sterilised and eliminated a time consuming intraoperative step. While once specialist and expensive, in house 3D printing is now economically viable and a helpful tool in the management of complex patients.
The
Introduction. The