Improving the accuracy of measuring 6 degree of freedom tibiofemoral kinematics is a crucial step in gait analysis, but skin-marker estimated kinematics are subject to soft tissue artefacts. Fluoroscopic systems have been reported to achieve high accurate kinematics, but their induced irradiation, limited field of view, and high cost hampers routine usage on large patient cohorts. The aim of this study is to assess the feasibility of measuring tibiofemoral kinematics using multi-channel A-mode ultrasound system in cadaver experiment and to assess its achievable accuracy. A full cadaver was placed with its back on a surgery table while its legs were overhanging the edge of the table. Upper body was fixated and right leg was moved by means of pulling a rope. Two bone pins with optical markers were mounted to the femur and tibia separately to measure the ground truth of motion. Six custom holders containing 30 A-mode ultrasound transducers and 18 optical markers were mounted to six anatomical regions. By measuring the bone to ultrasound transducer distance and using the spatial information of the optical markers on the holders, 30 bone surface points were determined. The corresponding bones (femur and tibia) were registered to these acquired points after which the tibiofemoral kinematics were determined. This study presents a multi-channel A-mode ultrasound system and the first results have shown its feasibility of reconstructing tibiofemoral kinematics in cadaver experiment. Although the reconstructed tibiofemoral kinematics is less accurate than a fluoroscopic system, it outperforms a skin-mounted markers system. Thus, this A-mode Ultrasound approach could provide a non-invasive and non-radiative method for measuring tibiofemoral kinematics, which may be used in clinic gait analysis or even
Introduction. Recently,