We compared and quantified the modes of failure and patterns of wear of 11 Mittelmeier and 11 Ceraver-Ostal retrieved alumina-alumina hip prostheses with reference to the corresponding clinical and radiological histories. Macroscopic wear was assessed using a three-dimensional co-ordinate measuring machine. Talysurf contacting profilometry was used to measure surface roughness on a microscopic scale and SEM to determine mechanisms of wear at the submicron level. The components were classified into one of three categories of wear: low (no visible/measurable wear), stripe (elliptical wear stripe on the heads and larger worn areas on the cups) and severe (macroscopic wear, large volumes of material lost). Overall, the volumetric wear of the alumina-alumina prostheses was substantially less than the widely used metal and ceramic-on-polyethylene combinations. By identifying and eliminating the factors which accelerate wear, it is expected that the lifetime of these devices can be further increased.
Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics. Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement.Introduction
Methods
In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode.Introduction
Method
Introduction. A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. Method. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A
Introduction. The biomechanical behavior of lumbar spine instrumentation is critical in understanding its efficacy and durability in clinical practice. In this study, we aim to compare the biomechanics of the lumbar spine instrumented with single-level posterior rod and screw systems employing two distinct screw designs: paddle screw versus conventional screw system. Method. A fully cadaveric-validated 3D ligamentous model of the lumbopelvic spine served as the foundation for our
Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A
The influence of rigid fixation and permanent compression on the results, the timing of fusion and rehabilitation after fractures of the femoral neck was investigated. A hip fracture is 60–80% of all fractures of the proximal femur. Despite recent advances in the treatment of this disease, the percentage of unsatisfactory outcomes as high as 25–35%. The choice of surgical treatment in femoral neck fractures in the elderly remains as controversial as it was almost 50 years ago when Speed called him as “the unsolved fracture. Hip replacement is currently the gold standard in the treatment of femoral neck fractures. But compared with the osteosynthesis operation takes more time, is accompanied by massive blood loss, sometimes the need for transfusion and a higher risk of deep wound infection. Given these facts the best is an indoor low-traumatic method of osteosynthesis locking. Compare of the results of femoral neck fractures using of osteosynthesis 3 blade nail, spongious screws and nail for permanent compression. A retrospective analysis of treatment of 252 patients from 1982 to 2015 with subcapitale and transcervical fractures of the femoral neck on the basis “RCTO named by H.J. Makazhanova”. In the research locales patients older than 40 years. All patients were divided according to the applied method of treatment: 1 group of 95 patients operated using a 3-blade-nail, in the 2nd group of 105 patients operated on spongious screws, in the 3 group of 52 patients operated nail for the permanent compression, authoring. All patients underwent x-ray examination before and after surgery. The average period from time of injury before performing the osteosynthesis amounted to 4–7 days. The follow-up period was 6–12 months. The results obtained clinically and radiographically divided into good, satisfactory, poor. Good and satisfactory results were regarded as positive, and poor results as negative. The average age of patients was 67.5 years. Among these female patients − 174 (69%), the male − 78 (31%). Traumatization more prone to elderly accounting for 206 (81.7%) cases, and only 46 (18.3%) in the middle age group. Analysis of the results of treatment showed positive results in 1 group − 69.5 %, in group 2 − 83.8 %, in group 3 − 96.2 %. In the first group of 29 (31.5 %) and in the second group of 17 (16.2 %) patients have postoperative complications: secondary displacement, nail migration, pseudarthrosis, necrosis of head. The patients of third group have postoperative complications in 2 cases (3.8 %): displacement of bone fragments according of retraumatization. Employability was restored in 1 group − 7–9 months, in group 2 - in 6–8 months, 3 group - through 6–6.5 months. 1). The method of choice for fresh fractures of the femoral neck, especially subcapital fractures in the elderly, is a minimally invasive method of closed compression osteosynthesis. 2).
A foreign-body-type host response can contribute to the induction and release of collagenolytic tissue-destructive enzymes of pathogenetic significance. Our aim was to analyse collagenase-3 in two conditions with putative involvement of foreign-body reactions. Synovial membrane-like tissue samples were obtained from cases of aseptic loosening of a total hip replacement (THR) and osteoarthritis (OA). The reverse transcription polymerase chain reaction (RT-PCR) disclosed that all the samples from patients contained collagenase-3 mRNA compared with only three out of ten control samples. The identity of the RT-PCR amplification product was confirmed by nucleotide sequencing. Immunohistochemical staining showed that collagenase-3 was present in endothelial cells, macrophages and fibroblasts, including those found in the synovial lining. This finding was confirmed by avidin-biotin-peroxidase complex-alkaline phosphatase-anti-alkaline phosphatase double staining and the specificity of the staining by antigen preabsorption using recombinant human collagenase-3. Collagenase-3 was released into the extracellular space and thus found in the synovial fluid in all patient samples as shown by Western blotting. The similar extent of collagenase-3 expression in aseptic loosening and OA compared with the low expression in control synovial membrane suggests involvement of a similar, foreign-body-based pathogenetic component in both.
Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing. The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.Aims
Methods
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from After one year of use, the volumetric wear was 8.4 mm3 for the anatomical prosthesis, but 44.6 mm3 for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.
The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage. Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02). We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.