Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 227 - 230
1 Feb 2012
Yang T Wang T Tsai Y Huang K

In patients with traumatic brain injury and fractures of long bones, it is often clinically observed that the rate of bone healing and extent of callus formation are increased. However, the evidence has been unconvincing and an association between such an injury and enhanced fracture healing remains unclear. We performed a retrospective cohort study of 74 young adult patients with a mean age of 24.2 years (16 to 40) who sustained a femoral shaft fracture (AO/OTA type 32A or 32B) with or without a brain injury. All the fractures were treated with closed intramedullary nailing. The main outcome measures included the time required for bridging callus formation (BCF) and the mean callus thickness (MCT) at the final follow-up. Comparative analyses were made between the 20 patients with a brain injury and the 54 without brain injury. Subgroup comparisons were performed among the patients with a brain injury in terms of the severity of head injury, the types of intracranial haemorrhage and gender. Patients with a brain injury had an earlier appearance of BCF (p < 0.001) and a greater final MCT value (p < 0.001) than those without. There were no significant differences with respect to the time required for BCF and final MCT values in terms of the severity of head injury (p = 0.521 and p = 0.153, respectively), the types of intracranial haemorrhage (p = 0.308 and p = 0.189, respectively) and gender (p = 0.383 and p = 0.662, respectively). These results confirm that an injury to the brain may be associated with accelerated fracture healing and enhanced callus formation. However, the severity of the injury to the brain, the type of intracranial haemorrhage and gender were not statistically significant factors in predicting the rate of bone healing and extent of final callus formation


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives. Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. Methods. A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. Results. Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm. 2. (. sd. 6.15). Histology revealed ‘cutting-cones’ traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. Conclusions. A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1263 - 1268
1 Sep 2013
Savaridas T Wallace RJ Salter DM Simpson AHRW

Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague–Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm. -2. (. sd. 7.63) vs 24.65 Nmm. -2. (. sd. 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (. sd. 0.75) vs 4.6 mmAl (. sd. 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007). . Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing. Cite this article: Bone Joint J 2013;95-B:1263–8


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_8 | Pages 5 - 5
1 May 2018
Calder P Koroma P Wright J Goodier D Taylor S Blunn G Moazen M
Full Access

Aim. To quantify the micro-motion at the fracture gap in a tibial fracture model stabilised with an external fixator. Method. A surrogate model of a tibia and a cadaver leg were fractured and stabilised using a two-ring hexapod external fixator. They were tested initially under static loading and then subjected to vibration. Results. The overall stiffness of the cadaver leg was significantly higher than the surrogate model under static loading. This resulted in a significantly higher facture movement in the surrogate model. In the surrogate model there was no significant difference between the displacement applied via the vibrating platform and the fracture movement at the fracture gap. The fracture movement was however found to be statistically lower during vibration in the cadaver leg. Discussion. The significant difference in stiffness seen between the surrogate and cadaveric model is likely due to multiple factors such as the presence of soft tissues and fibula, including the biomechanical differences between the frame constructs. The fracture movement seen at 200N loading in the cadaveric leg was approximately 1mm which corresponds to partial weight bearing and a displacement shown to promote callus formation. During vibration however, the movements were far less suggesting that micromotion would be insufficient to promote healing. It may be proposed that soft tissues can alter the overall stiffness and fracture movement recorded in biomechanical studies investigating the effect of various devices or therapies


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 62 - 62
1 Apr 2013
Moazen M Mak JH Etchels L Jones AC Jin Z Wilcox RK Tsiridis E
Full Access

There are a number of periprosthetic femoral fracture (PFF) fixation failures. In several cases the effect of fracture configuration on the performance of the chosen fixation method has been underestimated. As a result, fracture movement within the window that seems to promote callus formation has not been achieved and fixations ultimately failed. This study tested the hypothesis that: PFF configuration and the choice of plate fixation method can be detrimental to healing. A series of computational models were developed, corroborated against measurements from a series of instrumented laboratory models and in vivo case studies. The models were used to investigate the fixation of different fracture configurations and plate fixation parameters. Surface strain and fracture movement were compared between the constructs. A strong correlation between the computational and experimental models was found. Computational models showed that unstable fracture configurations increase the stress on the plate fixation. It was found that bridging length plays a pivotal role in the fracture movement. Rigid fixations, where there is clinical evidence of failure, showed low fracture movement in the models (<0.05mm); this could be increased with different screw and plate configurations to promote healing. In summary our results highlighted the role of fracture configuration in PFF fixations and showed that rigid fixations that suppress fracture movement could be detrimental to healing


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 19 - 19
1 Apr 2013
Harada N Watanabe Y Abe S Sato K Yamanaka K Sakai Y Kaneko T Matsushita T
Full Access

Purpose. The purpose of this study was to evaluate the effects of implantation of mesenchymal stem cell derived condrogenic cells (MSC-DC) on bone healing in segmental defects in rat femur. Methods. Five-millimeter segmental bone defects were produced in the mid-shaft of the femur of Fisher 344 rats and stabilized with external fixator. The Treatment Group received MSC-DC, seeded on a PLGA scaffold, locally at the site of the bone defect, and Control Group received scaffold only. The healing processes were monitored radiographically (Softex), and studied radiographically (Micro-CT) and histologically. Results. All the bone defects in the Treatment Group healed radiographically with bridging callus formation at 4 weeks after the procedure, while none of the Control Group had achieved bone union. Micro-CT showed that newly formed bone volume in the Treatment Group at 16 weeks was 1.5 times that of unaffected side. Histological examination showed that the implanted scaffold of the Treatment Group were covered with periosteum-derived bridging callus and filled with cancellous bone-like tissue derived from enchondral ossification. Conclusion. The results of this study suggest that implantation of MSC-DC surprisingly enhances bone healing in segmental bone defects in rat much better than previously reported similar therapy using MSC


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 75 - 75
1 Apr 2013
Steck R Koval L Matthys R Nuetzi R Stieger A Gregory L Govaert G Epari D Schuetz MA Histing T
Full Access

Despite its clinical significance, metaphyseal fracture healing has received little attention in research and experimental models have been limited. In particular it is not known to what extent the mechanical environment plays a role in metaphyseal fracture healing. Recently, a new murine internal fixation plate has been developed to stabilise fractures in the distal femur under highly standardised conditions. Goal of the current study was to modify this design, in order to be able to evaluate the influence of the fixator bending stiffness on metaphyseal fracture healing in mice. Adapting the existing single body design, resulting in low flexibility fixation, two new plates were developed with a decreased bending stiffness of approximately 65% and 45% of the original implant (100%). Pilot experiments were performed on 54 animals, whereas the mice were sacrificed and fracture healing assessed radiologically and biomechanically after 14 and 28 days. MicroCT evaluation confirmed that the osteotomy was created in the trabecular, metaphyseal bone of the distal mouse femora. All bones showed progressive fracture healing over time, with decreased implant stiffness leading to increased periosteal callus formation. These implants represent an important new research tool to study molecular and genetic aspects of metaphyseal fracture healing in mice under standardized mechanical conditions, in order to improve clinical treatment in challenging situations, such as in osteoporotic bone


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 17 - 17
1 Apr 2013
Giles E Nauth A Lin T Glick M Schemitsch E
Full Access

Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating bone regeneration. Hypothesis. The current study compared early and late outgrowth endothelial progenitor cell subtypes (EPCs vs OECs) for fracture healing potential in vitro and in vivo. Methods. Primary cell cultures were isolated and characterized by endothelial assays, immunosorbent assays, and multi-color flow cytometry. Co-cultures of EPC subtypes with/without primary osteoblasts (pObs) were analyzed for tube length and connectivity. In vivo, EPCs or OECs (1×10. 6. ) seeded on a gelfoam scaffold were implanted in a rat model of nonunion. Radiography was used to monitor callus formation. Results. OECs expressed more BMP-2 and less VEGF than EPCs (p<0.05). Analysis of surface markers showed decreased CD34+/CD133+/Flk-1+, CD133+ and CD45+ populations in OECs while CD34+/CD31+/Flk-1+ cells increased. pObs significantly inhibited the strong tubulogenesis of OECs while enhancing connectivity and sprout length of EPCs. In vivo, 0/6 scaffold-control and 1/5 OEC rats achieved union at 10 weeks. In comparison, all EPC rats achieved full or partial union. Discussion and Conclusion. Despite favorable tubulogenic and osteoconductive profiles of OECs, EPCs display enhanced fracture healing in vivo. Differences in CXCR4 expression and cell-mediated effects may contribute to this result


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 35 - 35
1 Apr 2013
Sato K Watanabe Y Abe S Harada N Yamanaka K Sakai Y Kaneko T Matsushita T
Full Access

Reconstruction of 10mm segmental bone defects in rat by mesenchymal stem cell derived chondrogenic cells (MSC-DC). Background. Mesenchymal stem cell derived condrogenic cells (MSC-DC) have excellent potential for healing 5 mm bone defect in rat femur. Purpose. To evaluate the effectiveness of MSC-DC on bone healing in 10 mm segmental bone defects in rat femur. Methods. 10 millimeter bone defects were produced in rat femur and fixed with external fixator. We divided this model into four groups according to the kind of graft for bone defects. These bone defects were grafted by MSC-DC seeded on a poly (DL-lactic acid-co-glycolic acid) (PLGA) scaffold in Group A, MSC seeded on a PLGA scaffold in Group B, PLGA scaffold only in Group C, and autologus bone graft in Group D. The healing processes were monitored radiographically and studied biomechanically and histologically. Results. All the bone defects in Group A healed radiographically with bridging callus formation at 4 weeks after the procedure, while none of Group B, C, and D had achieved bone union even at 8 weeks. Mechanical testing revealed that Group A showed approximately 40 % bending strength at 4 weeks compared with the contralateral side, and approximately 60 % at 8 weeks. In histology, Group A, maturation of bridging callus occurred from outside and enchondral ossification was prominent from inside. Conclusion. This study showed that MSC-DC with PLGA scaffold enhances bone healing even in large bone defects


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 975 - 978
1 Nov 1997
Bar-On E Sagiv S Porat S

We report the outcome of 19 children aged 5.2 to 13.2 years with 20 fractures of the femoral shaft requiring surgery, who were randomly assigned to have external fixation (EF) or flexible intramedullary nailing (FIN) (10 fractures each). The duration of the operation averaged 56 minutes for the EF group with 1.4 minutes of fluoroscopy, compared with 74 minutes and 2.6 minutes, respectively, for the FIN group. The early postoperative course was similar, but the EF group showed much more callus formation. The time to full weight-bearing, full range of movement and return to school were all shorter in the FIN group. The FIN complications included one transitory foot drop and two cases of bursitis at an insertion site. In the EF group there was one refracture, one rotatory malunion requiring remanipulation and two pin-track infections. At an average follow-up of 14 months two patients in the EF group had mild pain, four had quadriceps wasting, one had leg-length discrepancy of over 1 cm, four had malalignment of over 5°, and one had limited hip rotation. In the FIN group, one patient had mild pain and one had quadriceps wasting; there were no length discrepancies, malalignment or limitation of movement. Parents of the FIN group were more satisfied. We recommend the use of flexible intramedullary nailing for fractures of the femoral shaft which require surgery, and reserve external fixation for open or severely comminuted fractures


Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims

Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before.

Methods

Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 146 - 146
1 Sep 2012
Vlachou M Beris A Dimitriadis D
Full Access

The equinovarus hind foot deformity is one of the most common deformities in children with spastic paralysis and is usually secondary to cerebral palsy. Split posterior tibialis tendon transfer is performed to balance the flexible spastic varus foot and is preferable to posterior tibialis lengthening, as the muscle does not loose its power and therefore the possibility of a valgus or calcaneovalgus deformity is diminished. The cohort of the study consisted of 50 children with cerebral palsy who underwent split posterior tibial lengthening to manage spastic equinovarus hind foot deformity. Our inclusion criteria were: ambulatory patients with cerebral palsy, age less than 6 years at the time of the operation, varus deformity of the hind foot during gait, flexible varus hind foot deformity, and the follow-up at least 4 years. We retrospectively evaluated 33 ambulant patients with flexible spastic varus hind foot deformity. Twenty-eight patients presented unilateral and 5 bilateral involvement. The mean age at the time of the operation was 10,8 years (6–17) and the mean follow-up was 10 years (4–14). Eighteen feet presented also equinus hind foot deformity, requiring concomitant Achilles cord lengthening. Clinical evaluation was based on the inspection of the patients while standing and walking, the range of motion of the foot and ankle, callus formation and the foot appearance using the clinical criteria of Kling et al. Anteroposterior and lateral weight-bearing radiographs of the talo-first metatarsal angle were measured. The position of the hind foot was evaluated according to the criteria of Chang et al for the surgical outcome. 20 feet were graded excellent, 14 were graded good and 4 were graded poor. Feet with recurrent equinovarus deformity or overcorrection into valgus or calcaneovalgus deformity were considered as poor results. There were 23 feet presenting concomitant cavus foot component that underwent supplementary operations performed at the same time with the index operation. None of the feet presented mild or severe valgus postoperatively, while 4 feet presented severe varus deformity and underwent calcaneocuboid fusion sixteen and eighteen months after the index operation. On the anteroposterior and lateral weight-bearing radiographs the feet with severe varus had a negative talo-first metatarsal angle (mean −26,8 ± 18,4), those with mild varus had a mean of −14,5 ± 12,2. In feet with the hind foot in neutral position the mean value was 5.0 ± 7.4. The results of the feet in patients with hemiplegic pattern were better and significantly different than the diplegic and quadriplegic ones (p = 0.005). The results in our cases were in general satisfactory as 34 out of 38 feet were graded excellent and good. The feet with poor results presented a residual varus deformity due to intraoperative technical errors


Bone & Joint Open
Vol. 2, Issue 10 | Pages 796 - 805
1 Oct 2021
Plumarom Y Wilkinson BG Willey MC An Q Marsh L Karam MD

Aims

The modified Radiological Union Scale for Tibia (mRUST) fractures score was developed in order to assess progress to union and define a numerical assessment of fracture healing of metadiaphyseal fractures. This score has been shown to be valuable in predicting radiological union; however, there is no information on the sensitivity, specificity, and accuracy of this index for various cut-off scores. The aim of this study is to evaluate sensitivity, specificity, accuracy, and cut-off points of the mRUST score for the diagnosis of metadiaphyseal fractures healing.

Methods

A cohort of 146 distal femur fractures were retrospectively identified at our institution. After excluding AO/OTA type B fractures, nonunions, follow-up less than 12 weeks, and patients aged less than 16 years, 104 sets of radiographs were included for analysis. Anteroposterior and lateral femur radiographs at six weeks, 12 weeks, 24 weeks, and final follow-up were separately scored by three surgeons using the mRUST score. The sensitivity and specificity of mean mRUST score were calculated using clinical and further radiological findings as a gold standard for ultimate fracture healing. A receiver operating characteristic curve was also performed to determine the cut-off points at each time point.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 456 - 461
1 Mar 2021
Sasaki G Watanabe Y Yasui Y Nishizawa M Saka N Kawano H Miyamoto W

Aims

To clarify the effectiveness of the induced membrane technique (IMT) using beta-tricalcium phosphate (β-TCP) for reconstruction of segmental bone defects by evaluating clinical and radiological outcomes, and the effect of defect size and operated site on surgical outcomes.

Methods

A review of the medical records was conducted of consecutive 35 lower limbs (30 males and five females; median age 46 years (interquartile range (IQR) 40 to 61)) treated with IMT using β-TCP between 2014 and 2018. Lower Extremity Functional Score (LEFS) was examined preoperatively and at final follow-up to clarify patient-centered outcomes. Bone healing was assessed radiologically, and time from the second stage to bone healing was also evaluated. Patients were divided into ≥ 50 mm and < 50 mm defect groups and into femoral reconstruction, tibial reconstruction, and ankle arthrodesis groups.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1648 - 1655
1 Nov 2021
Jeong S Hwang K Oh C Kim J Sohn OJ Kim JW Cho Y Park KC

Aims

The incidence of atypical femoral fractures (AFFs) continues to increase. However, there are currently few long-term studies on the complications of AFFs and factors affecting them. Therefore, we attempted to investigate the outcomes, complications, and risk factors for complication through mid-term follow-up of more than three years.

Methods

From January 2003 to January 2016, 305 patients who underwent surgery for AFFs at six hospitals were enrolled. After exclusion, a total of 147 patients were included with a mean age of 71.6 years (48 to 89) and 146 of whom were female. We retrospectively evaluated medical records, and reviewed radiographs to investigate the fracture site, femur bowing angle, presence of delayed union or nonunion, contralateral AFFs, and peri-implant fracture. A statistical analysis was performed to identify the significance of associated factors.


Bone & Joint Open
Vol. 2, Issue 4 | Pages 227 - 235
1 Apr 2021
Makaram NS Leow JM Clement ND Oliver WM Ng ZH Simpson C Keating JF

Aims

The primary aim of this study was to identify independent predictors associated with nonunion and delayed union of tibial diaphyseal fractures treated with intramedullary nailing. The secondary aim was to assess the Radiological Union Scale for Tibial fractures (RUST) score as an early predictor of tibial fracture nonunion.

Methods

A consecutive series of 647 patients who underwent intramedullary nailing for tibial diaphyseal fractures were identified from a trauma database. Demographic data, comorbidities, smoking status, alcohol consumption, use of non-steroidal anti-inflammatory drugs (NSAIDs), and steroid use were documented. Details regarding mechanism of injury, fracture classification, complications, and further surgery were recorded. Nonunion was defined as the requirement for revision surgery to achieve union. Delayed union was defined as a RUST score < 10 at six months postoperatively.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 1002 - 1008
1 Aug 2019
Al-Hourani K Stoddart M Khan U Riddick A Kelly M

Aims

Type IIIB open tibial fractures are devastating high-energy injuries. At initial debridement, the surgeon will often be faced with large bone fragments with tenuous, if any, soft-tissue attachments. Conventionally these are discarded to avoid infection. We aimed to determine if orthoplastic reconstruction using mechanically relevant devitalized bone (ORDB) was associated with an increased infection rate in type IIIB open tibial shaft fractures.

Patient and Methods

This was a consecutive cohort study of 113 patients, who had sustained type IIIB fractures of the tibia following blunt trauma, over a four-year period in a level 1 trauma centre. The median age was 44.3 years (interquartile range (IQR) 28.1 to 65.9) with a median follow-up of 1.7 years (IQR 1.2 to 2.1). There were 73 male patients and 40 female patients. The primary outcome measures were deep infection rate and number of operations. The secondary outcomes were nonunion and flap failure.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 530 - 538
1 Apr 2020
Rollick NC Gadinsky NE Klinger CE Kubik JF Dyke JP Helfet DL Wellman DS

Aims

Dual plating of distal femoral fractures with medial and lateral implants has been performed to improve construct mechanics and alignment, in cases where isolated lateral plating would be insufficient. This may potentially compromise vascularity, paradoxically impairing healing. This study investigates effects of single versus dual plating on distal femoral vascularity.

Methods

A total of eight cadaveric lower limb pairs were arbitrarily assigned to either 1) isolated lateral plating, or 2) lateral and medial plating of the distal femur, with four specimens per group. Contralateral limbs served as matched controls. Pre- and post-contrast MRI was performed to quantify signal intensity enhancement in the distal femur. Further evaluation of intraosseous vascularity was done with barium sulphate infusion with CT scan imaging. Specimens were then injected with latex medium and dissection was completed to assess extraosseous vasculature.


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1234 - 1240
1 Sep 2018
Brady J Hardy BM Yoshino O Buxton A Quail A Balogh ZJ

Aims

Little is known about the effect of haemorrhagic shock and resuscitation on fracture healing. This study used a rabbit model with a femoral osteotomy and fixation to examine this relationship.

Materials and Methods

A total of 18 male New Zealand white rabbits underwent femoral osteotomy with intramedullary fixation with ‘shock’ (n = 9) and control (n = 9) groups. Shock was induced in the study group by removal of 35% of the total blood volume 45 minutes before resuscitation with blood and crystalloid. Fracture healing was monitored for eight weeks using serum markers of healing and radiographs.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1385 - 1391
1 Oct 2018
Qvist AH Væsel MT Jensen CM Jensen SL

Aims

Recent studies of nonoperatively treated displaced midshaft clavicular fractures have shown a high incidence of nonunion and unsatisfactory functional outcome. Some studies have shown superior functional results and higher rates of healing following operative treatment. The aim of this study was to compare the outcome in these patients after nonoperative management with those treated with fixation.

Patients and Methods

In a multicentre, parallel randomized controlled trial, 146 adult patients with an acute displaced fracture of the midthird of the clavicle were randomized to either nonoperative treatment with a sling (71, 55 men and 16 women with a mean age of 39 years, 18 to 60) or fixation with a pre-contoured plate and locking screws (75, 64 men and 11 women with a mean age of 40 years, 18 to 60). Outcome was assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) Score, the Constant Score, and radiographical evidence of union. Patients were followed for one year.