We performed A total of 12 cadaveric lower limbs were tested with a commercial
image-free navigation system using trackers secured by bone screws.
We then tested a non-invasive fabric-strap system. The lower limb
was secured at 10° intervals from 0° to 60° of knee flexion and
100 N of force was applied perpendicular to the tibia. Acceptable
coefficient of repeatability (CR) and limits of agreement (LOA)
of 3 mm were set based on diagnostic criteria for anterior cruciate
ligament (ACL) insufficiency.Objectives
Methods
Abstract. Introduction. MCL injuries often occur concurrently with ACL rupture – most noncontact ACL injuries occur in valgus and external rotation (ER) - and conservative MCL treatment leads to increased rate of ACL reconstruction failure. There has been little work developing effective MCL reconstructions. Methods.
Introduction. In the setting of periprosthetic joint infection, the complete removal of implants and cement can be challenging with well-fixed, cemented implants about the knee. This can get especially complex in the setting of long cemented femoral stems. Osteotomies are well described in the proximal femur and tibia for removal of implants and cement. There is little information available on distal femoral osteotomies to facilitate knee implant and retained cement removal. Methods. We describe a novel anterolateral oblique distal femoral osteotomy for the removal of well-fixed, cemented components during resection knee arthroplasty that preserves vascularity to the osteotomized segment.
Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods