Introduction.
Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with
Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with
Introduction. Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the
Background.
Objectives. The setting angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). It is difficult to set the cup at correct angle in minimally invasive THA by modified Watson-Jones approach. So we use
Objectives. Many reports were shown about the angle of the cup in total hip arthroplasty (THA) with
The ligament balance as well as the alignment is essential for successful total knee arthroplasty (TKA). However it is usually assessed and adjusted only at 0? and 90?. In order to evaluate the ligament balance at the other angles we have used a navigation system. Twenty-one patients underwent posterior stabilised mobile bearing TKA using a
Introduction. We have used
Introduction. Deformity after femoral osteotomy varies between patients. Some researchers reported good results when using cemented stems for the hips after femoral osteotomy, but there are many disadvantages that obstruct ideal fixation using cemented stems. Therefore, we developed cementless custom-made stems and inserted those using a computed tomography (CT) –based navigation system. Methods. Eighteen dysplastic hips of 15 patients after intertrochanteric osteotomy were investigated in the present study. Individual computed tomography data were used to manufacture cementless custom-made femoral stems out of Ti-6Al-4V. The proximal 1/3 of each stem was coated using porous coating covered with hydroxyapatite coating. The stems were inserted using a
The occurrence of impingement can lead to instability, accelerated wear, and unexplained pain after THA. While implant and bony impingement were widely investigated, importance of soft tissue impingement was unclear. In the THA through posterior approach, it is known that posterior soft tissue repair can decrease the risk of dislocation. However, it is not known whether anterior soft tissue impingement by anterior hip capsule will influence hip ROM. The purpose of this study is to quantitatively measure the effect of anterior capsule resection on hip ROM in vivo during posterior approach THA using hip navigation system. From June 2011, 26 hips (25 patients) that underwent primary THA using Stryker
Introduction:. Since2007, we have used
Introduction. Since2007, we have used
The optimal positioning of the acetabular component is a relevant prognostic factor in total hip arthroplasty (THA). Because of substantial errors of manual technique in cup placement even with experienced surgeon, computer aided navigation system has been developed in recent years. However, existence of the hardware around acetabulum likely deteriorates the accuracy of the navigation system, namely in revision THA case and postoperative status of pelvic fracture. Here we report a case who we successfully performed THA using CT based navigation system although there were multiple hardware around acetabulum due to osteosynthesis for the previous pelvic fracture. A forty-one years old man presented with intolerable hip pain with severe radiographic osteoarthritic findings in left hip joint. He had sustained left pelvic fracture and posterior hip dislocation due to traffic accident and undergone osteosynthesis using multiple plates and screws when he was forty years old. However, progressive collapsing of femoral head and acetabulum occurred. Then, we indicated THA for his situation and planned to apply the CT based navigation system (Stryker CT based hip Ver.1.1 softwear and Cart II system). Preoperative workup revealed incomplete union of posterior and superior acetabular wall and we had to retain plates and screws for the stable fixation of acetabular cup. The existence of the hardware made it complicated to perform three dimensional planning and templating. Meticulous surface editing of pelvis to exclude the metal artifact and fibrocartilagenous tissue was needed to achieve accurate surface registration. In the operation room, we had to use unusual way of registration to complete two steps of registration. In the first step (roughly matching between patient's physical pelvic surface and edited pelvic surface in work station using corresponding 5 points), we utilized head of screw and hole of the plate which we could easily identify intraoperatively, in addition to ASIS and innominate groove. In the second step (strict matching using more than 30 points of pelvic surface), we had to identify the pelvic bony surface, as excluding the metal surface and fibrocartilagenous tissue such as fracture callus. These efforts enabled us to accomplish substantial accuracy of registration with RMS of 0.5 mm. Final cup orientation at the end of surgery was 41° of inclination and 25° of anteversion. Postoperative CT scan revealed that cup placement angle was 40° of inclination and 25° of anteversion, almost identical with intraoperative value.Objective
Case presentation
We have used CT-based total hip navigation system from 2003, to set the acetabular socket in optimal position. At first, we had used CT-based land-mark matching system. It needs matching procedure during surgery, touching paired points in surgical exposure. From 2006, we started to use new
The purpose of this study was to evaluate in vivo fit and fill analysis of tapered wedge-type stem in total hip arthroplasty (THA) with computed tomography (CT)-based navigation system. 100 THAs were all performed through the posterolateral approach, with patients in the lateral decubitus position. Each cohort of 50 consecutive primary cementless THAs with was compared with and without
Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the
INTRODUCTION. Cup orientation of total hip arthroplasty (THA) is critical for dislocation, range of motion, polyethylene wear, pelvic osteolysis, and component migration. But, substantial error under manual technique has been reported specially in revision THA due to a bone loss and poor anatomical landmark. We have used three kinds of navigation systems for cup positioning in primary and revision THA. OBJECTIVES. The purpose of this study is to evaluate the accuracy of navigation in revision THAs. METHODS. Since 2005, consecutive 24 revision THAs were performed with volumetric post-operative CT scan images to measure three dimensional positionings of cups. We implanted cementless hemispherical cups in 14 hips using fluoro-based navigation (FN) system (Stealth Station Tria), in 5 hips using a
Background. Accuracy of implantation is a recognized prognostic factor for the long-term survival of TKA. The purpose of this study was to analyze the accuracy of component orientation and post-operative alignment of the leg following CT-based navigation-assisted TKA and to compare these parameters with those of a conventional surgical technique. Methods. We retrospectively compared the alignment of 130 total knee arthroplasties performed with a
Introduction. Proper acetabular cup placement is very important factor for successful clinical results in total hip arthroplasty (THA). Malposition of acetabular cup has been linked to increased rates of dislocation, impingement, pelvic osteolysis, cup migration, leg length discrepancy and polyethylene wear. Recently, some authors reported usefulness of navigation systems to set the acetabular cups with correct position. The purpose of this study is to evaluate the accuracy of acetabular cup placement in THA using computed tomography (CT)-based navigation system. Material and Methods. Subjects were 235 hip joints we performed primary THA using CT based navigation system (Stryker® Navigation System, Stryker Corporation, Kalamazoo, MI, USA) from 2008 to 2014 and could assess the implant position by postoperative CT images. Their average age was 65.1 years (range 35–88). In all cases, non-cemented acetabular cups were implanted. TriAD cups (Stryker®) were used in 31 hips, and Tritanium cups (Stryker®) were used in 15 hips, and Trident cups (Stryker®) were used in 189 hips. Registration in this navigation system used surface matching system. We designed cup implantation using preoperative CT images and 3-dimensional (3-D) templates. The planned position of acetabular cup was in principle 40 degrees of inclination and 20 degrees of anteversion. However, we adjusted the better position of the cups according to pelvic tilt and femoral neck anteversion. When we placed acetabular cups, the position, inclination and anteversion, were measured by navigation system. After surgery, the positions of the cups were measured using postoperative CT images, navigation software and 3-D templates. Postoperative position using CT images were adjusted according to preoperative pelvic plane. The discrepancies between intraoperative navigation data and postoperative CT images data were analyzed as accuracy of navigation system in cup placement. Results. No complications related to navigation procedures were encountered. There was no case with acetabular cup displacement obviously. The discrepancies between intraoperative data and postoperative data were an average difference of 1.6 degrees (SD, 1.4 degrees) for inclination and 2.1 degrees (SD, 1.7 degrees) for anteversion. Discussion and Conclusions. In THA, cup position is very important factor of postoperative long-term success. However, it is not easy to place the acetabular cup with proper position using conventional devices.