Advertisement for orthosearch.org.uk
Results 1 - 20 of 28
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 786 - 792
1 Jun 2016
Schotanus MGM Sollie R van Haaren EH Hendrickx RPM Jansen EJP Kort NP

Aims. This prospective randomised controlled trial was designed to evaluate the outcome of both the MRI- and CT-based patient-specific matched guides (PSG) from the same manufacturer. Patients and Methods. A total of 137 knees in 137 patients (50 men, 87 women) were included, 67 in the MRI- and 70 in the CT-based PSG group. Their mean age was 68.4 years (47.0 to 88.9). Outcome was expressed as the biomechanical limb alignment (centre hip-knee-ankle: HKA-axis) achieved post-operatively, the position of the individual components within 3° of the pre-operatively planned alignment, correct planned implant size and operative data (e.g. operating time and blood loss). Results. The patient demographics (e.g. age, body mass index), correct planned implant size and operative data were not significantly different between the two groups. The proportion of outliers in the coronal and sagittal plane ranged from 0% to 21% in both groups. Only the number of outliers for the posterior slope of the tibial component showed a significant difference (p = 0.004) with more outliers in the CT group (n = 9, 13%) than in the MRI group (0%). . Conclusion. The post-operative HKA-axis was comparable in the MRI- and CT-based PSGs, but there were significantly more outliers for the posterior slope in the CT-based PSGs. Take home message: Alignment with MRI-based PSG is at least as good as, if not better, than that of the CT-based PSG, and is the preferred imaging modality when performing TKA with use of PSG. Cite this article: Bone Joint J 2016;98-B:786–92


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 87 - 87
1 Jul 2022
Rajput V Fontalis A Plastow R Kayani B Giebaly D Hansejee S Magan A Haddad F
Full Access

Abstract. Introduction. Coronal plane alignment of the knee (CPAK) classification utilises the native arithmetic hip-knee alignment to calculate the constitutional limb alignment and joint line obliquity which is important in pre-operative planning. The objective of this study was to compare the accuracy and reproducibility of measuring the lower limb constitutional alignment with the traditional long leg radiographs versus computed tomography (CT) used for pre-operative planning in robotic-arm assisted TKA. Methods. Digital long leg radiographs and pre-operative CT scan plans of 42 patients (46 knees) with osteoarthritis undergoing robotic-arm assisted total knee replacement were analysed. The constitutional alignment was established by measuring the medial proximal tibial angle (mPTA), lateral distal femoral angle (LDFA), weight bearing hip knee alignment (WBHKA), arithmetic hip knee alignment (aHKA) and joint line obliquity (JLO). Furthermore, the Coronal Plane Alignment of the Knee (CPAK) classification was utilised to classify the patients based on their coronal knee alignment phenotype. Results. Mean age of the patients was 66 years (SD 9) and mean BMI 31.2 (SD 3.9). There were 27 left and 19 right sided surgeries. The Pearson's corelation coefficient was 0.722 (p=0.008) for WBHKA; 0.729 (p<0.001) for MPTA; 0.618 (p=0.14) for aHKA; 0.502 (p= 0.04) for LDFA and 0.305 (p=0.234) for JLO. CPAK classification was concordant for 53% study participants between the two groups. Conclusion. Three-dimensional CT-based modelling with computer software more accurately predicts constitutional limb alignment and JLO as defined by the CPAK classification compared to plain long-leg radiographs in pre-operative planning of total knee arthroplasty


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 435 - 442
1 Apr 2019
Zambianchi F Franceschi G Rivi E Banchelli F Marcovigi A Nardacchione R Ensini A Catani F

Aims. The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Patients and Methods. Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded. Results. Following exclusions and losses to follow-up, 334 medial robotic-arm assisted UKAs were assessed at a mean follow-up of 30.0 months (8.0 to 54.9). None of the measured parameters were associated with overall KOOS outcome. Correlations were described between specific KOOS subscales and intraoperative, post-implantation robotic data, and between FJS-12 and femoral component sagittal alignment. Three UKAs were revised, resulting in 99.0% survival at two years (95% confidence interval (CI) 97.9 to 100.0). Conclusion. Although little correlation was found between intraoperative robotic data and overall clinical outcome, surgeons should consider information regarding 3D component placement and soft-tissue balancing to improve patient satisfaction. Reproducible and precise placement of components has been confirmed as essential for satisfactory clinical outcome. Cite this article: Bone Joint J 2019;101-B:435–442


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives. An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. Materials and Methods. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. Results. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). Conclusion. The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development. Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van’t Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320–327. DOI: 10.1302/2046-3758.58.2000626


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1201 - 1203
1 Sep 2013
Tsukeoka T Tsuneizumi Y Lee TH

We performed a CT-based computer simulation study to determine how the relationship between any inbuilt posterior slope in the proximal tibial osteotomy and cutting jig rotational orientation errors affect tibial component alignment in total knee replacement. Four different posterior slopes (3°, 5°, 7° and 10°), each with a rotational error of 5°, 10°, 15°, 20°, 25° or 30°, were simulated. Tibial cutting block malalignment of 20° of external rotation can produce varus malalignment of 2.4° and 3.5° with a 7° and a 10° sloped cutting jig, respectively. Care must be taken in orientating the cutting jig in the sagittal plane when making a posterior sloped proximal tibial osteotomy in total knee replacement. Cite this article: Bone Joint J 2013;95-B:1201–3


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 10 - 10
1 Oct 2019
Stulberg BN Zadzilka JD Kreuzer S Long WJ Kissin YD Liebelt RA Campanelli V Zuhars J
Full Access

Introduction. Active robotics for total knee Arthroplasty (TKA) uses a CAD-CAM approach to plan the correct size and placement of implants and to surgically achieve planned limb alignment. The TSolution One Total Knee Application (THINK Surgical Inc., Fremont, CA) is an open-implant platform, CT-based active robotic surgical system. A multi-center, prospective, non-randomized clinical trial was performed to evaluate the safety and effectiveness of robotic-assisted TKA using the TSolution One Total Knee Application. This report details the findings from the IDE. Methods. Inclusion criteria for patients receiving robotic TKA were: primary unilateral TKA; Kellgren-Lawrence OA grade 3 or 4; BMI < 40 kg/m2; coronal plane deformity < 20° varus; sagittal flexion contracture < 15°. In addition to monitoring all adverse events (AE), a pre-defined list of relevant major AEs were specifically identified to evaluate safety (Healy et al, 2013): medial collateral ligament injury; extensor mechanism disruption; neural deficit; periprosthetic fracture; patellofemoral dislocation; tibiofemoral dislocation; and vascular injury. Bleeding complications were also assessed. Malalignment rate, defined as the percentage of patients with more than a ± 3° difference in varus-valgus alignment from the preoperative plan, was used to determine accuracy of the active robotic system. Knee Society Scores (KSS) and Short Form 12 (SF-12) Health Surveys were assessed as clinical outcome measures. For each outcome, results were compared to published values associated with manual TKA. Results. A total of 115 patients were enrolled at 6 US centers and followed for a maximum of 12 months after surgery. Mean surgical time (incision to close) improved consistently as the technique evolved (first 10 cases = 131.5 min, first 20 cases = 122.4 min), with mean robot time = 45.8 min. The incidence of pre-defined AEs identified was 0%, serving as a measure of safety of the procedure. Outside of the pre-defined list, only one AE was definitely associated with the use of the device; a metal pin was left inside the knee joint but no reoperation was performed. No patients required a blood transfusion. Alignment outside of the ± 3° goal was 11.2% with a difference of 0.5° ± 1.9° (mean ± STD), which represents a 45% statistically significant (posterior probability > 0.95) reduction in malalignment compared to the literature (Mason et al, 2007). Mean KSS Functional scores improved from 40.5 at baseline to 65.3 at 3 months, mean KSS Objective scores improved from 36.8 to 81.0, mean KSS Patient Satisfaction scores improved from 14.4 to 30.6, and mean SF-12 Physical Component scores improved from 32.9 to 43.5. Discussion. The TSolution One Total Knee Application is descended from an active robotic system used in >8000 cases outside the United States since 2002. This trial represents the first US based study of this technology for primary TKA. The clinical study demonstrated positive safety outcomes as none of the seven pre-defined AEs were observed and there were no cases requiring transfusion. A positive effectiveness outcome was also demonstrated as the malalignment rate found in this study showed a substantial reduction from the 32% malalignment rate published in the literature for conventional instruments. KSS and SF-12 scores were comparable to other published TKA series. For figures, tables, or references, please contact authors directly


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims

Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies.

Methods

In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims

This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height.

Methods

Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 758 - 765
12 Sep 2024
Gardner J Roman ER Bhimani R Mashni SJ Whitaker JE Smith LS Swiergosz A Malkani AL

Aims

Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction.

Methods

This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims

No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model.

Methods

A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1485 - 1490
1 Nov 2014
Kim CW Seo SS Kim JH Roh SM Lee CR

The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, . sd. 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. Cite this article: Bone Joint J 2014; 96-B:1485–90


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 366 - 371
1 Apr 2004
Nabeyama R Matsuda S Miura H Mawatari T Kawano T Iwamoto Y

Our study evaluated the accuracy of an image-guided total knee replacement system based on CT with regard to preparation of the femoral and tibial bone using nine limbs from five cadavers. The accuracy was assessed by direct measurement using an extramedullary alignment rod without radiographs. The mean angular errors of the femur and tibia, which represent angular gaps from the real mechanical axis in the coronal plane, were 0.3° and 1.1°, respectively. The CT-based system, provided almost perfect alignment of the femoral component with less than 1° of error and excellent alignment with less than 3° of error for the tibial component. Our results suggest that standardisation of knee replacement by the use of this system will lead to improved long-term survival of total knee arthroplasty


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims

Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique.

Methods

Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 818 - 823
1 Aug 2004
Chauhan SK Clark GW Lloyd S Scott RG Breidahl W Sikorski JM

A controlled study, comparing computer- and conventional jig-assisted total knee replacement in six cadavers is presented. In order to provide a quantitative assessment of the alignment of the replacements, a CT-based technique which measures seven parameters of alignment has been devised and used. In this a multi-slice CT machine scanned in 2.5 mm slices from the acetabular roof to the dome of the talus with the subject’s legs held in a standard position. The mechanical and anatomical axes were identified, from three-dimensional landmarks, in both anteroposterior and lateral planes. The coronal and sagittal alignment of the prosthesis was then measured against the axes. The rotation of the femoral component was measured relative to the transepicondylar axis. The rotation of the tibial component was measured with reference to the posterior tibial condyles and the tibial tuberosity. Coupled femorotibial rotational alignment was assessed by superimposition of the femoral and tibial axial images. The radiation dose was 2.7 mSV. The computer-assisted total knee replacements showed better alignment in rotation and flexion of the femoral component, the posterior slope of the tibial component and in the matching of the femoral and tibial components in rotation. Differences were statistically significant and of a magnitude that support extension of computer assistance to the clinical situation


Bone & Joint Open
Vol. 1, Issue 7 | Pages 355 - 358
7 Jul 2020
Konrads C Gonser C Ahmad SS

Aims

The Oswestry-Bristol Classification (OBC) was recently described as an MRI-based classification tool for the femoral trochlear. The authors demonstrated better inter- and intraobserver agreement compared to the Dejour classification. As the OBC could potentially provide a very useful MRI-based grading system for trochlear dysplasia, it was the aim to determine the inter- and intraobserver reliability of the classification system from the perspective of the non-founder.

Methods

Two orthopaedic surgeons independently assessed 50 MRI scans for trochlear dysplasia and classified each according to the OBC. Both observers repeated the assessments after six weeks. The inter- and intraobserver agreement was determined using Cohen’s kappa statistic and S-statistic nominal and linear weights.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims

The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation.

Methods

We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 716 - 726
1 Jun 2020
Scott CEH Holland G Krahelski O Murray IR Keating JF Keenan OJF

Aims

This study aims to determine the proportion of patients with end-stage knee osteoarthritis (OA) possibly suitable for partial (PKA) or combined partial knee arthroplasty (CPKA) according to patterns of full-thickness cartilage loss and anterior cruciate ligament (ACL) status.

Methods

A cross-sectional analysis of 300 consecutive patients (mean age 69 years (SD 9.5, 44 to 91), mean body mass index (BMI) 30.6 (SD 5.5, 20 to 53), 178 female (59.3%)) undergoing total knee arthroplasty (TKA) for Kellgren-Lawrence grade ≥ 3 knee OA was conducted. The point of maximal tibial bone loss on preoperative lateral radiographs was determined as a percentage of the tibial diameter. At surgery, Lachman’s test and ACL status were recorded. The presence of full-thickness cartilage loss within 16 articular surface regions (two patella, eight femoral, six tibial) was recorded.