Advertisement for orthosearch.org.uk
Results 1 - 20 of 98
Results per page:
Bone & Joint Research
Vol. 11, Issue 4 | Pages 239 - 250
20 Apr 2022
Stewart CC O’Hara NN Bzovsky S Bahney CS Sprague S Slobogean GP

Aims. Bone turnover markers (BTMs) follow distinct trends after fractures and limited evidence suggests differential levels in BTMs in patients with delayed healing. The effect of vitamin D, and other factors that influence BTMs and fracture healing, is important to elucidate the use of BTMs as surrogates of fracture healing. We sought to determine whether BTMs can be used as early markers of delayed fracture healing, and the effect of vitamin D on BTM response after fracture. Methods. A total of 102 participants aged 18 to 50 years (median 28 years (interquartile range 23 to 35)), receiving an intramedullary nail for a tibial or femoral shaft fracture, were enrolled in a randomized controlled trial comparing vitamin D. 3. supplementation to placebo. Serum C-terminal telopeptide of type I collagen (CTX; bone resorption marker) and N-terminal propeptide of type I procollagen (P1NP; bone formation marker) were measured at baseline, six weeks, and 12 weeks post-injury. Clinical and radiological fracture healing was assessed at three months. Results. CTX and P1NP concentrations peaked at six weeks in all groups. Elevated six-week CTX and P1NP were associated with radiological healing at 12 weeks post-injury (odds ratio (OR) 10.5; 95% confidence interval 2.71 to 53.5, p = 0.002). We found no association between CTX or P1NP and functional healing. Baseline serum 25(OH)D showed a weak inverse relationship with P1NP (p = 0.036) and CTX (p = 0.221) at 12 weeks, but we observed no association between vitamin D supplementation and either BTM. Conclusion. Given the association between six-week BTM concentrations and three-month radiological fracture healing, CTX and P1NP appear to be potential surrogate markers of fracture healing. Cite this article: Bone Joint Res 2022;11(4):239–250


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 767 - 771
1 Jul 2001
Biedermann R Stöckl B Krismer M Mayrhofer P Ornstein E Franzén H

Our aim was to determine whether tantalum markers improved the accuracy and/or precision of methods for the measurement of migration in total hip replacement based on conventional measurements without mathematical correction of the data, and with Ein Bild Roentgen Analyse – Femoral Component Analysis (EBRA-FCA) which allows a computerised correction. Three observers independently analysed 13 series of roentgen-stereophotogrammetric-analysis (RSA)-compatible radiographs (88). Data were obtained from conventional measurements, EBRA-FCA and the RSA method and all the results were compared with the RSA data. Radiological evaluation was also used to quantify in how many radiographs the intraosseous position of the bone markers had been simulated. The results showed that tantalum markers improve reliability whereas they do not affect accuracy for conventional measurements and for EBRA-FCA. Because of the danger of third-body wear their implantation should be avoided unless they are an integral part of the method


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 933 - 933
1 Aug 2002
Reeve J


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Bone & Joint Research
Vol. 11, Issue 8 | Pages 528 - 540
1 Aug 2022
Dong W Postlethwaite BC Wheller PA Brand D Jiao Y Li W Myers LK Gu W

Aims. This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods. A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results. Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to BMD. The expression of klotho is also associated with bone markers. Conclusion. These data indicate that BCP enhances the serum level of klotho, leading to improved bone properties and mineralization in an experimental mouse model. Cite this article: Bone Joint Res 2022;11(8):528–540


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 90 - 90
1 Mar 2021
Mahatma M Jayasuriya R Gossiel F Gallagher O Hughes D Buckley S Gordon A Hamer A Tomouk M Wilkinson JM
Full Access

Abstract. Objective. In this phase 2 clinical trial (EudraCT 2011-000541-20) we examined the effect of denosumab versus placebo on osteolytic lesion activity in patients undergoing revision surgery after THA. Methods. Men and women ≥ 30 years old scheduled for revision surgery for symptomatic, radiologically-confirmed osteolysis were randomised (1:1) to receive either denosumab 60mg or placebo subcutaneously eight weeks prior to operation. At surgery, biopsies from the osteolytic membrane-bone interface were taken for histomorphometric analysis of osteoclast number, the primary outcome measure. Secondary outcome measures included other static histomorphometric indices and systemic bone turnover markers. Adverse events and patient-reported clinical outcome scores were recorded as safety endpoints. Results. Of the 24 subjects enrolled, 22 completed the study (10 denosumab) and comprise the per-protocol analysis. There were no differences in baseline characteristics and bone turnover markers between groups (p>0.05). The denosumab group had 78% fewer osteoclasts at osteolytic lesion sites (95% CI −61 to −95, P=0.011), 81% lower osteoclast surface (−70 to −95, P=0.009), and 73% lower eroded surface (−54 to −92, P=0.020) compared to the placebo group. Number of osteoblasts and osteoblast surface were also reduced by 81% (−62 to −100, p=0.021) and 82% (−64 to −101, p=0.017), respectively. Immunocytochemistry for cell proliferation (Ki67) and apoptosis (Caspase 3) identified no differences between the groups (p>0.05). At surgery, serum CTX-I in the denosumab group was 80% lower (−65 to −95, p<0.001), TRAP5b −65% (−40 to −90, p<0.001), PINP −53% (−41 to −65, p<0.001). Patient-reported outcome measures and the rate of adverse events (denosumab 6, placebo 7) were similar between groups (P>0.05). Conclusion. A single dose of denosumab reduced osteoclast activity within osteolytic lesions and was safe to administer. These data provide a biological basis for a phase 3 trial using clinical outcomes of pain, function and prosthesis survival as the study endpoints. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain). Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x10. 6. , G2a arm) and 16 the ‘low dose’ MSC (100x10. 6. , G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 24 - 24
1 Nov 2021
Wilkinson J
Full Access

To date there is no medical treatment alternative to surgery for osteolysis after THA. In this proof-of-concept clinical trial we examined the effect of a human monoclonal antibody against osteoclasts versus placebo on osteolytic lesion activity in patients undergoing revision surgery. Patients scheduled for revision for symptomatic osteolysis were randomised (1:1) to receive either denosumab 60mg or placebo subcutaneously eight weeks prior to operation. At surgery, biopsies from the osteolytic membrane-bone interface were taken for histomorphometric analysis of osteoclast number. Secondary outcome measures included systemic bone turnover markers. 22 subjects completed the study (10 denosumab). The denosumab group had 83% (−63 to −97), P=0.011 fewer osteoclasts at osteolytic lesion sites, 87% lower osteoclast surface (−65 to −95, P=0.009), and 72% lower eroded surface (−35 to −93, P=0.020) versus the placebo group. At surgery, serum CTX-I, TRAP5b and PINP were 80% (−65 to −95, p<0.001), 57% (−40 to −90, p<0.001), and 44% (−41 to −65, p<0.001) lower in the denosumab versus placebo groups, respectively. The rate of adverse events (denosumab 6, placebo 7) were similar between groups (P>0.05). These data provide a biological basis for a definitive clinical trial using pain, function and prosthesis survival as the study endpoints. As osteolysis/ aseptic loosening is the leading cause of prosthesis failure world-wide, the establishment of a non-surgical solution would reduce patient suffering and dramatically reducing the cost to healthcare economies


Background: The clinical significance of bone turnover markers is well recognized, at least in several diseases affecting the bone metabolism. However, their clinical significance (if any) remains still unknown in patients undergoing Total Joint Arthroplasty (TJA). Changes in the levels of some markers have been reported in the early postoperative period after Total Hip Arthroplasty; however their exact postoperative course has not been clearly documented yet. In order to assess the clinical value of biochemical markers when trying to determine the fixation of orthopaedic implants, it is necessary to clarify their normal postoperative course. The aim of this study was to extend the evaluation of the course of bone turnover markers over a longer period (12 postoperative months) following a TJA, and to assess the postoperative course for two of them (RANKL and Osteoprotegerin) for the first time. Methods: The serum levels of RANKL, Osteocalcin, Osteoprotegerin and bALP were determined one day preoperatively and several times during the first postoperative year in patients suffering from idiopathic osteoarthritis that underwent total knee (n=23) and hip arthroplasties (n=24). Results: There were statistically significant changes in the serum levels of all markers over time (p< 0,001). RANKL values initially increased and then gradually decreased. Following an initial decrease, Osteocalcin values continuously increased until the 2nd postoperative month and then continuously decreased. Osteoprotegerin initially increased, then decreased until the 4th postoperative month and then increased again reaching a peak 8 months postoperatively. Bone-specific ALP decreased until the 7th postoperative day. After that time it continuously increased, reaching a peak at the 8th month, and then it gradually decreased. There were no major differences in the postoperative course of all markers between the hip and knee arthroplasties. Conclusions: The levels of all bone markers did not uniformly ‘return’ to their preoperative values one year postoperatively. A one-year period is not enough, when assessing an orthopaedic implant’s fixation with the use of bone turnover markers


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca. 2+. ) content. Results. Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion. PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 99 - 99
1 Apr 2017
Povoroznyuk V Bystrytska M
Full Access

Aim. The aim of the study was to define the peculiarities of bone remodeling and identify specific parameters to development to heterotopic ossification. Materials and methods. Markers of bone formation (Osteocalcin, serum type 1 procollagen (N-terminal) (tP1NP)) and bone resorption (serum collagen type 1 cross-linked C-telopeptide (β-CTx)) were determined by the electrochemiluminiscence immunoassay “ECLIA” for Elecsys user cobas immunoassay analyser. In the study were included 23 patients with spinal cord injury – first group (average age 26.8 ± 3.9, duration of spinal cord injury from 3 to 12 months) and 23 healthy people's appropriate age and gender (average age 30.6 ± 6.0, years). In the first group included 11 patients with spinal cord injury with the presence of heterotopic ossification – subgroup I and 12 patients with spinal cord injury without heterotopic ossification – subgroup II. Results. The results of examination showed that patients of first group had significantly higher bone markers than control group: P1NP (256.7±48.2 ng/ml vs 49.3±5.1 ng/ml, p<0.001), serum β-CTx (1.47±0.23 ng/ml vs 0.45±0.04 ng/ml, p<0.0001), osteocalcin (52.2±9.8 ng/ml vs 24.9±2.08 ng/ml, p<0.001). There were obtained that levels of bone remodeling markers in patients with HO were significantly higher in comparison with patients without HO: P1NP (404.9±84.9 ng/ml vs 133.2±15.7 ng/ml, p<0.001), serum β-CTx (1.75±0.23 ng/ml vs 0.28±0.14 ng/ml, p<0.0001), osteocalcin (87.1±18.9 ng/ml vs 29.4±3.7 ng/ml, p<0.001). Conclusion. The bone formation and bone resorption markers in patient of first group were significantly higher than in healthy individuals of appropriate age. The rate of bone turnover markers in patient with HO was considerably higher than in patient without HO and the process of formation dominated over the resorption in patient with HO


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 401 - 401
1 Oct 2006
Ibrahim T Ong S Taylor G
Full Access

Background: Aseptic loosening of total joint arthroplasty is characterised by osteolysis caused by osteoclasts and macrophages. Osteolysis occurs by acidification and dissolution of hydroxyapatite crystals then proteolysis of the bone collagen matrix. N-Telopeptide (NTx) and deoxypyridinolone (DPD) represent highly specific markers for bone resorption. Aim: To investigate whether urinary NTx and DPD generated in-vivo can be used as bone markers in a small animal model of wear debris induced osteolysis. Materials and Methods: 41 and 38 urinary samples were collected from mice at autopsy four weeks following either the implantation of clinically relevant ceramic particles or sham surgery into their femora and assayed for NTx and DPD respectively. Bone markers were corrected for urinary creatinine. Results: The mean urinary NTx concentration for mice that underwent the implantation of clinically relevant ceramic particles was 95.0 nM BCE/mM creatinine compared to 85.3 nM BCE/mM creatinine for mice who had sham surgery (p = 0.8, 95%CI: −29.0 to 30.7). The mean urinary DPD concentration for mice that underwent the implantation of clinically relevant ceramic particles was 5.3 nM DPD/mM creatinine compared to 4.0 nM DPD/ mM creatinine for mice who had sham surgery (p = 0.07, 95%CI: −2.8 to 1.4). Conclusion: The absolute values of NTx and DPD increased in mice that underwent the implantation of clinically relevant ceramic particles compared to sham surgery even though this was not statistically significant. Extending the post operative interval might allow both NTx and DPD to be utilised as bone markers of osteolysis in our small animal model of aseptic loosening


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 264 - 264
1 Sep 2005
Walker S Li G Marsh D Coward SM Finch MB
Full Access

Introduction: Bone mineral density (BMD) is currently the gold standard in predicting osteoporotic fracture, but evidence suggests that over one third of such fractures occur in those with osteopenia or even normal BMD. The level of bone turnover may affect bone quality in these patients independently of BMD. Bone markers have evolved as tools in monitoring anti-resorptive treatment in osteoporosis. Aims: The aim of this study was to investigate if levels of bone markers in postmenopausal women could be used as an adjunct to BMD measurements in the assessment of fragility fracture risk. Patients and Methods: 60 postmenopausal women (30 osteoporotic, 30 with normal BDM) were studied. A single BMD measurement by dual energy x-ray absorptiometry (DEXA) enabled categorisation. Serum bone formation markers (bone specific alkaline phosphatase (BSAP) and osteocalcin (OC)), and resorption marker (C-telopetide of type 1 collagen (CTX)), were measured. History of low trauma fracture was documented for each woman. Results: 36% of the osteoporotic group had experienced at least one fragility fracture. However, the femoral neck and combined spinal BMD in these women was not significantly different from the 64% of osteoporotic women who had no prior fracture. There was also no significant difference in the age of women in both subgroups. Serum bone markers were significantly increased in the osteoporotic fracture subgroup when compared to the non-fracture subgroup and also to the non-osteoporotic controls. The largest increases were seen in the levels of CTX. Smaller increases in all markers were seen when the non-fracture subgroup was compared to the non-osteoporotic control group but these increases did not reach statistical significance. Conclusions: Bone turnover is significantly increased in postmenopausal osteoporotic women with previous fracture compared to both osteoporotic non-fracture counterparts and non-osteoporotic controls. This suggests higher bone turnover will increase fracture risk in osteoporotic women. It is possible that combining 2 or 3 markers to produce an “index of bone turnover” would be a useful tool when used in addition to BMD to identify those at greatest fracture risk


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 18 - 18
1 May 2016
Scheerlinck T Polfliet M Dekleck R Van Gompel G Buls N Vandemeulebroucke J
Full Access

Accurate detection of migration of hip arthroplasty stems without the burden of bone markers and stereo-radiographic equipment is of interest. This would facilitate the study of stem migration in an experimental setting, but more importantly, it would allow assessing stem loosening in patients with a painful hip outside a study protocol. We developed and validated a marker-free automated CT-based spatial analysis method (CTSA) to quantify stem-bone migration in successive CT scan acquisitions. First, we segmented the bone and stem within both three-dimensional images, then we pairwise registered those elements (Fig. 1). By comparing the rigid transformations of stem and bone, we calculated the migration of the stem with reference to the bone and transferred the three translation and three rotation parameters to an anatomic coordinate system. Based on the rigid transformation, we also calculated the point of the stem that presented the maximal migration (PMM). Accuracy was assessed in a stem-bone model (Fig. 2) by imposing 39 predefined stem rotations and translations, and by comparing those with values calculated with the CTSA tool. In all cases, differences were below 0.20 mm for translations and 0.19° for rotations (95% tolerance interval (95% TI) below 0.22 mm and 0.20°, largest standard deviation of the signed error (SDSE) 0.081 mm and 0.057°). Precision was defined as stem migration calculated in eight clinical relevant zero-migration scenarios. In all cases, precision was below 0.05 mm and 0.08° (95% TI below 0.06 mm and 0.08°, largest SDSE 0.012 mm and 0.020°). The largest displacement of the PMM on the stem was 0.169mm. The precision estimated in five patients was very dependent on the CT scan resolution and was below 0.48 mm and 0.37° (95% TI below 0.59 mm and 0.61°, largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.972 mm). In optimized conditions, the precision in patients improved largely and was below 0.040 mm and 0.111° (largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.156 mm). Our marker-free automated CT-based spatial analysis can detect hip stem migration with an accuracy and precision comparable to that of radiostereometric analysis (RSA), but without the burden of bone markers and the cost of stereo-radiographic equipment. As such, we believe our tool could make accurate measurement of stem migration available to departments without access to RSA and boost this type of research. Moreover, as CTSA does not rely on bone makers, it is applicable to all-comers with a painful hip arthroplasty. Indeed, in those patients with a reference CT scan after hip replacement, a new CT scan could demonstrate stem migration. If no initial CT scan is available, a reference scan could be taken during a first visit and repeated later. Additionally, a “stress test” of the hip could be performed. During such test, comparing CT images acquired during forced maximal intern and external rotation could demonstrate stem loosening


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 170 - 171
1 Mar 2009
Skaliczki G Zahár Á Somogyi P Makra M Kovács D Lakatos J
Full Access

Aim of the study: Impaction bone grafting is examined and published by numerous authors in the literature, however possible correlation between bone remodeling at the site of revision hip arthroplasty and bone turnover markers is not well known yet. Materials and method: 22 patients undergoing revision hip arthroplasty with impaction bone grafting were enrolled in a prospective study. Bone turnover markers and bone mineral density (DXA) were measured preoperatively. WOMAC and Harris Hip Score (HHS) were evaluated pre- and postoperatively. During a one-year-period the same tests were performed after 6 weeks, 3 months, 6 months, 12 months respectively. The data were analyzed using logistic regression. Results: Significant bone remodeling was observed at the site of revision hip arthroplasty at the 6 month follow up. WOMAC and HHS improved significantly after surgery. One deep wound infection occurred due to MRSE, removal of the prosthesis was performed. Conclusion: Cancellous bone grafting secures primary stability for the hip implants, and after a period of 12 months proper bone remodeling is achieved


Objective: The clinical significance of biochemical bone markers in the diagnosis and severity of Osteoarthritis remains still unknown. The relationship between biochemical bone turnover markers and commonly recognizable radiographic features of knee and hip osteoarthritis remains unclear. Purpose: We evaluated the serum levels of Receptor Activator of Nuclear Factor-κB Ligand (RANKL), Bone-specific Alkaline Phosphatase (b-ALP), Osteocalcin and Osteoprotegerin in two groups of patients suffering from osteoarthritis of the Knee or Hip respectively, aiming to correlate these results with the radiographically assessed severity of the disease and the patients’ age. The results between the two groups were also compared. Patients-Methods: Between March 2007 and February 2009, a total of 175 patients suffering from Knee or Hip Osteoarthritis were enrolled in the study. Following proper radiographic evaluation, the osteoarthritic changes of patients were graded by 3 orthopaedic surgeons according to the system of Kellgren and Lawrence; at the same time the serum levels of biochemical markers were determined. Results: Osteoprotegerin was found to be positively correlated with age in both the Knee (r=0.376, p=0.000) and Hip (r=0.425, p=0.001) group, whether Osteocalcin was significantly correlated with the age in the group of Knee Osteoarthritis(r=0.218, p=0.02). No other significant correlation was noted between the serum level of markers and age of patients in both groups. There was not significant difference in the mean serum level of biochemical markers among patients belonging to each of the four different levels of severity of hip and knee OA. There was no significant impact of the type of Osteoarthritis, to the serum level of all biochemical markers. Conclusions: Based on our results, it seems that none of the serum biochemical markers studied can be used (either independently or in combination with the others) as surrogates for radiographic imaging in Hip and Knee osteoarthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 173 - 173
1 Dec 2013
Sonntag R Koch S Merziger J Rieger JS Reinders J Reiner T Kretzer JP
Full Access

Background. Migration analysis after total joint arthroplasty are performed using EBRA analysis (Krismer et al., 1997) or - more accurate but also much more cost-intensive and time-consuming – via radiostereometric analysis (RSA). For the latter, additional radiographs from two inclined perspectives are needed in regular intervals in order to define the position of the implant relative to tantalum bone markers which have been implanted during surgery of the artificial joint (Fig. 1). Modern analysis software promises a migration precision along the stem axis of a hip implant of less than 100 μm (Witvoet-Brahm et al., 2007). However, as the analysis is performed semi-automatically, the results are still dependent on the subjective evaluation of the X-rays by the observer. Thus, the present phantom study aims at evaluating the inter- and intra-observer reliability, the repeatability as well as the precision and gives insight into the potential and limits of the RSA method. Materials and Methods. Considering published models, an RSA phantom model has been developed which allows a continuous and exact positioning of the prostheses in all six degrees of freedom (Fig. 2). The position sensitivities of the translative and rotative positioning components are 1 μm and 5 to 24, respectively. The roentgen setup and Model-Based RSA software (3.3, Medis specials bv, Leiden, Netherlands) was evaluated using the SL-PLUS® standard hip stem (size 7, Smith & Nephew, Baar, Switzerland). The inter-observer (10 repetitions) and intra-observer (3 observers) reliability have been considered. Additionally, the influences of the model repositioning and inclination as well as the precision after migration and rotation along the stem axis are investigated. Results and Discussion. Precision along the stem axis was determined to 161 μm (± 230 μm), in the lateral plane 100 μm (± 85 μm) and maximal rotations to 0.524° (± 1.268°). High reproducibility (intra-observer reliability) is reported with relevant influences of the inclination of the implant on the radiograph, in particular for the first clinical scene which serves as a reference. Deviations after translations along the stem axis are 0.37 ± 1.92% and −3.28 ± 6.62% after rotations. In conclusion, the precision given by the software producer of less than 100 μm could not be verified. Beside the limitations from the software, potential sources of errors are the subjective analysis by the observer, a small number of bone markers and the positioning of the implant (patient) during X-ray examination. Though, Model-Based RSA largely outmatches the EBRA approach in terms of measuring implant migration. However, standardization of the X-rays and RSA analysis is recommended


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 131 - 131
1 May 2012
Liu R Peacock L Mikulec K Morse A Schindeler A Little D
Full Access

Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by quantitative PCR in osteoprogenitors, myoblasts, and fibroblasts following BMP-2 treatment. The MyoD-Cre x ROSA26R and MyoD-Cre x Z/AP mouse strains were used to track the fate of MyoD+ cells in vivo. In these double-transgenic mice, MyoD+ progenitors undergo a permanent recombination event to induce reporter gene expression. Ectopic bone was produced by the intramuscular implantation of BMP-7. Closed tibial fractures and open tibial fractures with periosteal stripping were also performed. Cellular contribution was tracked at one, two and three week time points by histological staining. Osteoprogenitors and myoblasts exhibited comparable expression of early and late bone markers; in contrast bone marker expression was considerably less in fibroblasts. The sensitivity of cells to BMP-2 correlated with the expression of BMP receptor-1a (Bmpr1a). Pilot experiments using the MyoD-Cre x Rosa26R mice identified a contribution by MyoD expressing cells in BMP-induced ectopic bone formation. However, false positive LacZ staining in osteoclasts led us to seek alternative systems such as the MyoD-cre x Z/AP mice that have negligible background staining. Initially, a minor contribution from MyoD expressing cells was noted in the ectopic bones in the MyoD-cre x Z/AP mice, but without false positive osteoclast staining. Soft tissue trauma usually precedes the formation of ectopic bone. Hence, to mimic the clinical condition more precisely, physical injury to the muscle was performed. Traumatising the muscle two days prior to BMP-7 implantation: (1) induced MyoD expression in quiescent satellite cells; (2) increased ectopic bone formation; and (3) greatly enhanced the number of MyoD positive cells in the ectopic bone. In open tibial fractures the majority of the initial callus was MyoD+ indicating a significant contribution by myogenic cells. In contrast, closed fractures with the periosteum intact had a negligible myogenic contribution. Myoblasts but not fibroblasts were highly responsive to BMP stimulation and this was associated with BMP receptor expression. Our transgenic mouse models demonstrate for the first time that muscle progenitors can significantly contribute to ectopic bone formation and fracture repair. This may have translational applications for clinical orthopaedic therapies