The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or
A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable
Summary. A promising approach to stimulate in vivo bone formation by using our newly developed magnesium-based
Bone loss continues to be a clinical and therapeutic problem. Bone reconstruction of osseous defects is a challenge after fracture and traumatic injuries, infections and tumors. The common objective is to regenerate bone morphology and function. Several techniques have been developed to promote bone formation, but the advent of new biomaterials allows us to take an entirely different approach to the treatment of bone voids. However, the use of
Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable
With promising antibiofilm properties, rifampicin is considered as a cornerstone in the complementary treatment of bone and joint infections. But, achieving an adequate concentration of rifampicin long-term in bone tissue is a challenge. Long-term systemic administration also comes with concomitant side effects. Thus, local delivery of rifampicin in a carrier to ensure the high local concentration of antibiotic in surgical site after intervention due to infection could be a valuable alternative. However, an ideal platform for local delivery of rifampicin is still lacking. A calcium sulphate/hydroxyapatite (CaS/HA) (Cerament, Bonesupport AB, Sweden) biomaterial was used as a local delivery platform. Here we aimed 1) to evaluate the injectability of CaS/HA hand-mixed with rifampicin at various concentrations up to maximum one daily dose used systemically in clinical practice 2) to test a clinically used and commercially available mixing device containing the biphasic ceramic with rifampicin. Three different concentrations (100 mg, 300 mg and 600 mg) of rifampicin powder (Rifampicin Ebb, Sanofi S.P.A, Italy) diluted in 5 mL of mixing solution (C-TRU, Bonesupport AB, Sweden) were used. Rifampicin solution was mixed to the CaS/HA powder and the injectability of the CaS/HA plus rifampicin composite was evaluated by extruding 250 µL of paste manually through a graduated 1 mL syringe connected to an 18G needle (Ø=1.2 mm, L=4 cm). Mixing was done with a spatula for 30 s at 22°C ±1°C. Total weight of the paste before and after extrusion were measured. To normalize the amount of composite that remained in the needle and syringe tip after injection, the mean of the paste extruded from the syringe at 3 min was calculated for the tested concentrations (normalized value). Injectability (%) was calculated by dividing the weight of the paste extruded from the syringe with normalized value. Each test was repeated for three times at various time points (3, 5, 7 and 9 min). Additionally, 300 mg rifampicin was chosen to mix with the CaS/HA in a commercially available mixing system, which is used clinically.Background
Materials & Methods
The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique ( Six pairs of cadaveric humeri were obtained through an ethically-approved donation program. The humeri were osteotomized to simulate a reproducible four-fragment fracture with the aid of a dedicated jig. Preparation included the simulation of a bone defect in the humeral head. One humerus of each pair was randomly assigned to one of two reconstruction techniques: (i) Introduction
Materials and Methods
An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.
This work features a new approach to overcome drawbacks of commercial calcium phosphate cements in terms of application by on-site preparation and bone ingrowth by introduction of macropores in the material using a hydrofluoroalkane based aerosol foam. The application of calcium phosphate bone cements (CPCs) into a void for example of an osteoporotic bone is very difficult as the cement paste is made outside the application site and subsequently applied into the damaged bone. A common drawback of especially apatitic cements is a very low resorption rate due to small pore size Therefore different approaches have been described to add macropores into the cement2, leading to bone ingrowth and tissue penetration. The aim of this project is the use of two separate formulations in pressurised systems – a suspension and an emulsion – which can be mixed in a specially developed device and can be applied easily and efficiently into a bone directly during surgery leading to a self-hardening macro porous CPC foam. The intention is to fill voids in osteoporotic bones to ensure stability for implants like e.g. screws for femur neck fractures. An increased stability for implants can allow the possibility of a less invasive femur neck preserving therapy in contrast to a femur neck replacement. Other indications for such foam (i.e. kyphoplasty) are under evaluation.Summary Statement
Introduction
Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.
Skeletal sequels of traumatisms, diseases or surgery often lead to bone defects that fail to self-repair. Although the gold standard for bone reconstruction remains the autologous bone graft (ABG), it however exhibits some drawbacks and
Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common
Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of
Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic
Infections represent a devastating complication in orthopedic and traumatological surgery, with high rates of morbidity and mortality. An early intervention is essential, and it includes a radical surgical approach supported by targeted intravenous antimicrobial therapy. The availability of parenteral antibiotics at the site of infection is usually poor, so it is crucial to maximize local antibiotic concentration using local carriers. Our work aims to describe the uses of one of these systems, Stimulan®, for the management and prevention of infections at our Institution. Analysing the reported uses of Stimulan®, we identified two major groups:
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in bone marrow mesenchymal stem cells (MSCs), the cells responsible for maintaining bone homeostasis and orchestrating fracture repair. By 3D printing MSCs in coral-laden bioinks we utilise high throughput (HT) fabrication and evaluation of osteogenesis, overcoming the limitations of traditional screening methods. MSC and coral-laden GelXA (CELLINK) bioinks were 3D printed in square bottom 96 well plates using a CELLINK BIO X printer with pneumatic adapter Samples were non-destructively monitored during the culture period, evaluating both the sample and the culture media for metabolism (PrestoBlue), cytotoxicity (lactose dehydrogenase (LDH)) and osteogenic differentiation (alkaline phosphatase (ALP)). Endpoint, destructive assays used included qRT-PCR and SEM imaging. The inclusion of coral in the printed bioink was biocompatable with the MSCs, as reflected by maintained metabolism and low LDH release. The inclusion of coral induced osteogenic differentiation in the MSCs as seen by ALP secretion and increased RUNX2, collagen I and osteocalcin transcription. Sustainably grown coral was successfully incorporated into bioinks, reproducibly 3D printed, non-destructively monitored throughout culture and induced osteogenic differentiation in MSCs. This HT fabrication and monitoring workflow offers a faster, less labour-intensive system for the translation of
Abstract. Introduction. Osteoarthritis (OA) affects more than four million people in the UK alone. Bone marrow lesions (BMLs) are a common feature of subchondral bone pathology in OA. Both bone volume fraction and mineral density within the BML are abnormal. The aim of this study was to investigate the effect of a potential treatment (bone augmentation) for BMLs on the knee joint mechanics in cases with healthy and fully degenerated cartilage, using finite element (FE) models of the joint to study the effect of BML size. Methods. FE models of a human tibiofemoral joint were created based on models from the Open Knee project (simtk.org). Following initial mesh convergence studies, each model was manipulated in ScanIP (Synopsys-Simpleware, UK) to incorporate a BML 2mm below the surface of the tibial contact region. Models representing extreme cases (healthy cartilage, no cartilage; BML region as an empty cavity or filled with
As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal
Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with
Spinal surgery deals with the treatment of different pathological conditions of the spine such as tumors, deformities, degenerative disease, infections and traumas. Research in the field of vertebral surgery can be divided into two main areas: 1) research lines transversal to the different branches; 2) specific research lines for the different branches. The transversal lines of research are represented by strategies for the reduction of complications, by the development of minimally invasive surgical techniques, by the development of surgical navigation systems and by the development of increasingly reliable systems for the control of intra-operative monitoring. Instead, specific lines of research are developed within the different branches. In the field of oncological pathology, the current research concerns the development of in vitro models for the study of metastases and research for the study of targeted treatment methods such as electrochemotherapy and mesenchymal stem cells for the treatment of aneurysmal bone cysts. Research in the field of spinal deformities is focused on the development of increasingly minimally invasive methods and systems which, combined with appropriate pharmacological treatments, help reduce trauma, stress and post-operative pain. Scaffolds based on blood clots are also being developed to promote vertebral fusion, a fundamental requirement for improving the outcome of vertebral arthrodesis performed for the treatment of degenerative disc disease. To improve the management and the medical and surgical treatment of vertebral infections, research has focused on the definition of multidisciplinary strategies aimed at identifying the best possible treatment path. Thus, flow-charts have been created which allow to manage the patient suffering from vertebral infection. In addition, dedicated silver-coated surgical instrumentation and