Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT
An accurate geometrical three-dimensional (3D) model of human bone is required in many medical procedures including Total Knee Arthroplasty (TKA) and computer-assisted surgical navigation. Segmentation of Computed Tomography (CT) datasets is commonly used to obtain such models. However, such a method is expensive and time consuming. We herein propose a novel method for patient specific
Background. Periprosthetic femoral fractures following total hip arthroplasty are relatively uncommon but are associated with significant morbidity. With an increasing number of total hip arthroplasties being carried out in an aging population we need to ensure correct implants are chosen for our patients. A recent review of NJR data suggested a significantly higher revision risk for the Zimmer CPT stems due to periprosthetic fractures when compared to the Stryker Exeter stems. Objectives. Our aim was to compare the biomechanics of periprosthetic fractures around the CPT and Exeter V40 stems in a composite saw
Introduction and Objective. Calcium phosphates are among the most commonly used bone graft substitute materials. Compositions containing predominantly monetite (∼84.7%) with smaller additions of beta-tricalcium phosphate (β-TCP; ∼8.3%) and calcium pyrophosphate (Ca-PP; ∼6.8%) have previously been demonstrated to exhibit osteoinductive properties. Such a multi-component calcium phosphate bioceramic was fashioned in the form of hollowed-out, dome-shaped devices (15 mm diameter, 4 mm height), each reinforced with a 3D printed Ti6Al4V ELI frame. With the aim to induce bone formation beyond the skeletal envelope, these devices were investigated in vivo using a sheep (Ovis aries) occipital
Aims: Does PHILOS (Proximal Humeral Internal Locking system) construct provides better þxation than Clover leaf plate and T-plate in a simulated 2-part fracture of proximal humerus, in an osteoporotic
This study aimed to characterise the microarchitecture of bone in different species of animal leading to the development of a physiologically relevant 3D printed cellular model of trabecular (Tb) and cortical bone (CB). Using high resolution micro-computed tomography (μ-CT) bone samples from multiple species were scanned and analysed before creating Porcine and murine bone samples were scanned using μ-CT, with a resolution of 4.60 μM for murine and 11 μM for porcine and reconstructed to determine the architectural properties of both Tb and CB independently. A region of interest, 1 mm in height, will be used to generate an A 1 mm section of each bone was analysed, to determine the differences in the microarchitecture with the intent of setting a benchmark for the developmental 3D μ-CT scanning and analysis permits tessellation of the 3D output which will lead to the generation of an
Summary Statement. Vitamin E-UHMWPE particles have a reduced osteolysis potential in vivo when compared to virgin, highly cross-linked UHMWPE in a murine calvarial
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
Introduction. According to proposal of Noble, the femoral bone marrow cavity form of patients who underwent Total Hip Arthroplasty (THA) can be classified under 3 categories; those are Stovepipe, Normal and Champagne-fluted. We developed typical sodium chloride femoral model was created by 3D prototyping technique. The purpose was to identify the relationship of pressure zone of the surrounding areas between femoral bone marrow cavity form and hip stem. Materials and Method. As opponent clarified stem design concept Zweymüller type model was used. According to CT data with the patients who underwent THA, the sodium chloride femoral model was custom-made and selected as the representative model based on Noble's 3 categories. Eight models of each category were used to performed mechanical test. Result. In mechanics test, the result of comparison between the contact pressure zones of zone 1–7, significant differences of contact pressure zones were identified between the Stovepipe group and Normal group in zone 3, 4 and 5. In zone 3 and 5, such significant differences were also identified between Champagne-fluted group and Normal group. In Stovepipe group, a significant difference of the contact pressure zone was observed at the proximal and distal. In Champagne-fluted group and the Normal group, a significant difference was observed in the contact pressure in distal femur (3, 4, 5 Zone) and (Zone1, 2, 6, 7) proximal femur. Discussion. Although in most studies Sawbone® is used for femoral models, the focus of this research is of those who possess a characteristic femur with marrow cavity form. Therefore, sodium chloride
Introduction. In vitro findings (Bladed CL et al. ORS 2011 and J Biomed Mater Res B Appl Biomater, 2012) have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased osteolytic potential. Currently, there is no in vivo data determining the effects of wear debris from this new generation of implants. In this study we hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial
The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an Fresh cancellous bone cylinders (n=8) were harvested from porcine femur and implanted with additive manufactured porous titanium implants (Ø4 × 15 mm). To simulate physiological conditions, n=3 bone cylinders were tested in a bioreactor system with a cyclic 30 µm displacement at 1Hz for 300 cycles every day for 15 days in a total of 21 days culture. The chamber was also perfused with culture medium using a peristaltic pump. Control bone cylinders were cultured under static conditions (n=5). Samples were calcein stained at day 7. Post-testing, bone cylinders were formalin fixed and bony ingrowth was measured via microscopy.Abstract
Introduction
Methods
The Masquelet technique is a variable method for treating critical-sized bone defects, but there is a need to develop a technique for promoting bone regeneration. In recent studies of bone fracture healing promotion, macrophage-mesenchymal stem cell (MSC) cross-talk has drawn attention. This study aimed to investigate macrophage expression in the induced membrane (IM) of the Masquelet technique using a mouse critical-sized
Objectives. We aimed to further evaluate the biomechanical characteristics
of two locking screws versus three standard bicortical
screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular
Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone defect in a rat model. 36 Wistar rats were randomly divided in six groups based on follow-up periods and administered dose of adrenomedullin hormone. In each group, a 2 mm bone defect was created at the diaphysis of radius, bilaterally. NaCl solution was administered to sham groups three times a week for 4 and 8 weeks, intraperitoneally. Adrenomedullin was administered to study groups three times a week; 15 µg-4 weeks, 15 µg-8 weeks, 30 µg-4 weeks and 30 µg-8 weeks, respectively. After euthanasia, the segmental defects were evaluated by histomorphometric (new bone area (NBA)) and micro-tomographic (bone volume (BV), bone surface (BS), bone mineral density (BMD)) analysis. Although 4 and 8 weeks 15 μg administered study groups had higher NBA values than the other study and control groups, histomorphometric analysis did not reveal any statistical difference between the control and study groups in terms of new bone area (p > 0.05). In micro-tomographic analysis, BV was higher in 15 μg – 4 weeks group than 30 μg – 4 weeks group (296.9 vs 208.5, p = 0.003) and BS was lower in 30 μg – 4 weeks than 4 week - control group (695.5 vs 1334.7, p = 0.005) but in overall, no significant difference was found between the control and study groups (p > 0.05). Despite these minor differences in histomorphometric and micro-tomographic criteria indicating new bone formation, BMD values of 15 µg-4 and −8 weeks study groups showed significant increase comparing with the control group (p = 0.04, p = 0.001, respectively). Adrenomedullin seemed to have a positive effect on BMD at a certain dose (15 µg) but it alone is not considered sufficient for healing of the defect with new bone formation. Further studies are needed to assess its effects on bone tissue trauma. This study was funded by Hacettepe University Scientific Research Projects Coordination Unit
Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal
Nitrogen-containing bisphosphonates such as Zoledronic Acid (ZA) are used clinically for the treatment of skeletal diseases related with increased bone resorption. The gold standard is to administrate the drug through a systemic pathway, however this is often associated with high dosages, risk of side-effects, reduced site-specific drug delivery and hence, limited drug-effectiveness. A controlled local drug delivery, via a biomimetic bone graft, could be beneficial by direct and time-regulated application of significantly lower drug dosage at the site of interest. Thus, higher efficacy and reduced side-effects could be expected. In this experimental
Long-term survival of massive prostheses used to treat bone cancers is associated with extra-cortical bone growth and osteointegration into a grooved hydroxyapatite coated collar positioned adjacent to the transection site on the implant shaft [1]. The survivorship at 10 years reduces from 98% to 75% where osteointegration of the shaft does not occur. Although current finite element (FE) methods successfully
Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in bone repair by promoting angiogenesis and osteogenesis. In our previous study, endothelial progenitor cells (EPCs) promoted bone healing in a rat segmental bone defect as confirmed by radiological, histological and microCT evaluations (Atesok, Li, Schemitsch 2010); EPC treatment of fractures resulted in a significantly higher strength by biomechanical examination (Li, Schemitsch 2010). In addition, cell-based VEGF gene transfer has been effective in the treatment of segmental bone defects in a rabbit model (Li, Schemitsch et al 2009); Purpose of this study: Evaluation of VEGF gene expression after EPC local therapy for a rat segmental bone defect. Rat bone marrow-derived EPCs were isolated from the rat bone marrow by the Ficoll-paque gradient centrifuge technique. The EPCs were cultured for 7 to 10 days in endothelial cell growth medium with supplements (EGM-2-MV-SingleQuots, Clonetics). and collected for treatment of the rat segmental bone defect. EPCs were identified by immunocytochemistry staining with primary antibodies for CD34, CD133, FLK-1, and vWF. A total of fifty six rats were studied. A five millimeter segmental bone defect was created in the middle 1/3 of each femur followed by mini plate fixation. The treatment group received 1×106 EPCs locally at the bone defect and control animals received saline only. Seven control and seven EPC treated rats were included in each group at 1, 2, 3 and 10 weeks. Animals were sacrificed at the end of the treatment period, and specimens from the fracture gap area were collected and immediately frozen. Rat VEGF mRNA was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by VisionWorksLS. All measurements were performed in triplicate.Purpose
Method