Advertisement for orthosearch.org.uk
Results 1 - 20 of 101
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1575 - 1580
1 Nov 2013
Salai M Somjen D Gigi R Yakobson O Katzburg S Dolkart O

We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (sd 20)), compared with metformin 10 µg/ml (185% (sd 10)), metoprolol 0.25 µg/ml (190% (sd 20)), citalopram 0.05 µg/ml (150% (sd 10)) and omeprazole 0.001 µg/ml (145% (sd 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (sd 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis.

Cite this article: Bone Joint J 2013;95-B:1575–80.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core. Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×10. 4. cells proliferated faster than 5×10. 4. and 1×10. 5. cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core. This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture. In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 10. 3. cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT. Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis. Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1614 - 1620
1 Nov 2010
Fini M Tschon M Ronchetti M Cavani F Bianchi G Mercuri M Alberghini M Cadossi R

Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2018
Niedermair T Schirner S Seebröker R Straub R Grässel S
Full Access

Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell metabolism thereby possibly contributing to inferior bone quality. In order to explore this hypothesis, we investigated and compared metabolic parameters in osteoblasts and osteoclasts isolated from SP- and α-CGRP-deficient mice and wildtype (WT) controls. Bone marrow-derived macrophages (BMMs) and osteoblast-like cells from female C57Bl/6J (WT-control), Tac1-deficient (Tac1-/−) and α-CGRP-deficient (α-CGRP-/−) mice were isolated and differentiated according to established protocols (Niedermair et al., 2014). Cell metabolism studies were performed for enzyme activity and cell survival. We observed reduced numbers of BMM from Tac1-/− and α-CGRP-/− mice after initial seeding compared to WT but no changes in viability. Osteoblast-like cells from Tac1-/− mice tend to migrate out faster from bone chips compared to WT-controls whereas migration of osteoblast-like cells from α-CGRP-/− mice was not affected. Osteoblasts and osteoclast/BMM cultures from WT mice endogenously synthesize and secrete SP as well as α-CGRP at a picomolar range. We found no changes regarding BMM or osteoblast proliferation from both, Tac1-/− and α-CGRP-/− mice when compared to WT-controls. Caspase 3/7-activity was reduced by trend in osteoclast/BMM cultures of α-CGRP-/− mice and significantly reduced in osteoclast/BMM cultures of Tac1-/− mice compared to WT-controls. We found significantly higher Caspase 3/7-activity in osteoblasts of Tac1-/− mice after 14 days of osteogenic culture conditions when compared to WT-controls whereas osteoblasts of α-CGRP-/− mice were unaffected. Cathepsin K enzyme activity was significantly reduced in osteoclast/BMM cultures of Tac1-/− and α-CGRP-/− mice compared to WT-controls. ALP activity of Tac1-/− osteoblasts was higher after 7 days and reduced after 21 days of osteogenic culture compared to WT-controls whereas ALP activity of osteoblasts of α-CGRP-/− mice was unchanged. Acccording to our in vitro observations, we suggest some reduction in bone resorption rate but concomitantly a reduction in bone formation rate in Tac1-/− mice compared to WT-controls resulting in a net bone loss in these mice as bone resorption is faster than bone formation. Furthermore, we assume that bone resorption rate is slightly reduced in α-CGRP-/− mice but bone formation rate seems to be unchanged. Therefore we hypothesize that additional conditions present in vivo might contribute to the inferior bone properties of α-CGRP-/− mice


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1209 - 1213
1 Nov 2004
Calder JDF Buttery L Revell PA Pearse M Polak JM

Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying pathophysiology of the death of the bone cells remains uncertain. We have investigated nitric oxide mediated apoptosis as a potential mechanism and found that steroid- and alcohol-induced osteonecrosis is accompanied by widespread apoptosis of osteoblasts and osteocytes. Certain drugs or their metabolites may have a direct cytotoxic effect on cancellous bone of the femoral head leading to apoptosis rather than purely necrosis


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 197 - 197
1 Jul 2014
Marmotti A Castoldi F Rossi R Bruzzone M Dettoni F Marenco S Bonasia D Blonna D Assom M Tarella C
Full Access

Summary Statement

Preoperative bone-marrow-derived cell mobilization by G-CSF is a safe orthopaedic procedure and allows circulation in the blood of high numbers of CD34+ve cells, promoting osseointegration of a bone substitute.

Introduction

Granulocyte-colony-stimulating-factor(G-CSF) has been used to improve repair processes in different clinical settings for its role in bone-marrow stem cell(CD34+ and CD34-) mobilization. Recent literature suggests that G-CSF may also play a role in skeletal-tissue repair processes. Aim of the study was to verify the feasibility and safety of preoperative bone-marrow cell (BMC) mobilization by G-CSF in orthopaedic patients and to evaluate G-CSF efficacy in accelerating bone regeneration following opening-wedge high tibial valgus osteotomy(HTVO) for genu varum.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2022
Borciani G Montalbano G Melo P Baldini N Ciapetti G Brovarone CV
Full Access

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. Following chemical crosslinking with genipin, the nanostructured materials were tested for 2–3 weeks with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors. The favourable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of bone cells, encouraging a further investigation of the two bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 85 - 85
11 Apr 2023
Williamson A Bateman L Kelly D Le Maitre C Aberdein N
Full Access

The effect of high-fat diet and testosterone replacement therapy upon bone remodelling was investigated in orchiectomised male APOE-/- mice. Mice were split in to three groups: sham surgery + placebo treatment (control, n=9), orchiectomy plus placebo treatment (n=8) and orchiectomy plus testosterone treatment (n=10). Treatments were administered via intramuscular injection once a fortnight for 17 weeks before sacrifice at 25 weeks of age. Tibiae were scanned ex-vivo using µCT followed by post-analysis histology and immunohistochemistry. Previously presented µCT data demonstrated orchiectomised, placebo treated mice exhibited significantly reduced trabecular bone volume, number, thickness and BMD compared to control mice despite no significant differences in body weight. Trabecular parameters were rescued back to control levels in orchiectomised mice treated with testosterone. No significant differences were observed in the cortical bone. Assessment of TRAP stained FFPE sections revealed no significant differences in osteoclast or osteoblast number along the endocortical surface. IHC assessment of osteoprotegerin (OPG) expression in osteoblasts is to be quantified alongside markers of osteoclastogenesis including RANK and RANKL. Results support morphological analysis of cortical bone where no change in cortical bone volume or density between groups is in line with no significant change in osteoblast or osteoclast number and percentage across all three groups. Future work will include further IHC assessment of bone remodelling and adiposity, as well as utilisation of mechanical testing to establish the effects of observed morphological differences in bone upon mechanical properties. Additionally, the effects of hormone treatments upon murine-derived bone cells will be investigated to provide mechanistic insights


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 50 - 50
4 Apr 2023
Wang Z van den Beucken J van den Geest I Leeuwenburgh S
Full Access

Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence. Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release kinetics, ex vivo reconstructive properties of porous PMMA and in vitro anti-cancer efficacy against osteosarcoma cells were assessed. Morphologies, molecular structures, drug release profiles and in vitro cytostatic effects of two different drug-loaded granules on the proliferation of metastatic bone tumor cells were investigated. The mechanical strengths of PMMA-based cements were sufficient for tibia reconstruction at CMC contents lower than 4% (≤3%). The concentrations of released cisplatin (12.1% and 16.6% from PMMA with 3% and 4% CMC, respectively) were sufficient for killing of osteosarcoma cells, and the fraction of dead cells increased to 91.3% within 7 days. Functionalized xenogeneic granules released 29.5% of cisplatin, but synthetic CaP granules only released 1.4% of cisplatin over 28 days. The immobilized and released cisplatin retained its anti-cancer efficacy and showed dose-dependent cytostatic effects on the viability of metastatic bone tumor cells. Bone substitutes can be rendered therapeutically active for anticancer efficacy by functionalization with cisplatin. As such, our data suggest that multi-functional PMMA-based cements and cisplatin-loaded granules represent viable treatment options for filling bone defects after bone tumor resection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 49 - 49
4 Apr 2023
Zelmer A Gunn N Nelson R Richter K Atkins G
Full Access

Staphylococcus aureus (SA), the predominant pathogen in human osteomyelitis, is known to persist by forming intracellular reservoirs, including in bone cells (Schwarz et al., 2019, Yang et al., 2018, Krauss et al., 2019, Gao et al., 2020, Bosse et al., 2005), promoting decreased antibiotic susceptibility. However, there are no evidence-based treatment guidelines for intracellular SA infections in osteomyelitis. We sought to address this by systematically reviewing the literature and, testing a selection of antibiotic treatments in a clinically relevant in vitro assay. We conducted a systematic review of the literature to determine the current evidence for the efficacy of antibiotics against intracellular SA infections relevant to osteomyelitis. For the antibiotics identified as potentially useful, we determined their minimal inhibitory concentration (MIC) against 11 clinical osteomyelitis SA- isolates. We selected those for further testing reported able to reach a higher concentration in the bone than the identified MIC against the majority of strains. Thus, rifampicin, oxacillin, linezolid, levofloxacin, oritavancin and doxycycline were tested in human SaOS-2-osteocyte infection models (Gunn et al., 2021) of acute (1d) or chronic (14d) infection to clear intracellular SA. Antibiotics were tested at 1x/4x/10x the MIC for the duration of 1d or 7d in each model. A systematic review found that osteoblasts and macrophages have mostly been used to test immediate short-term activity against intracellular SA, with a high variability in methodology. However, some extant evidence supports that rifampicin, oritravancin, linezolid, moxifloxacin and oxacillin may be effective intracellular treatments. While studies are ongoing, in vitro testing in a clinically relevant model suggests that rifampicin, oxacillin and doxycycline could be effectively used to treat osteomyelitic intracellular SA infections. Importantly, these have lower MICs against multiple clinical isolates than their respective clinically-achievable bone concentrations. The combined approach of a systematic review and disease-relevant in vitro screening will potentially inform as to the best approach for treating osteomyelitis where intracellular SA infection is confirmed or suspected


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 40 - 40
14 Nov 2024
Siverino C Sun Q Yang D Solomon B Moriarty F Atkins G
Full Access

Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight incubation at a 10X minimum inhibitory concentration (MIC) of Levofloxacin and thereafter at 1XMIC. At each time point (days 1, 3, 5) viable intra- and extracellular bacteria were quantified. Result. All strains displayed similar intracellular infection and persistence capabilities in SaOS2-OB and SaOS2-OY. Independent of MOI, intracellular bacteria in SaOS2-OB decreased over time, becoming non-culturable by day 5. In contrast, SaOs2-OY displayed enhanced intracellular bacterial persistence at each time point. In the presence of increased Levofloxacin concentration (10XMIC), S. epidermidis could persist intracellularly for at least 14 days. Conclusion. This study showed for the first time that S. epidermidis can infect human osteocytes and persist intracellularly. Additionally, even a 10xMIC antibiotic concentration failed to eradicate intracellular bacteria, suggesting that persistence within osteocytes could contribute to treatment failure and establishment of chronic BJI


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 147 - 147
4 Apr 2023
Tohidnezhad M Kubo Y Gonzalez J Weiler M Pahlavani H Szymanski K Mirazaali M Pufe T Jahr H
Full Access

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static compression tests and digital image correlation (DIC) used to analyze full-field strain distribution. Bone resorbing cells and aromatase expression by osteocytes were evaluated immunohistochemically and empty osteocyte lacunae counted in cortical bone. Wilcoxon rank sum test was used for data comparison and differences considered statistically significant at p<0.05. When compared to old WT mice, old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness (Ct.Th), cortical area (Ct.Ar), and cortical bone fraction (Ct.Ar/Tt.Ar). Surprisingly, these parameters were not different in skeletally mature young adult mice. Metaphyseal trabeculae were thin but present in all old WT mice, while no trabecular bone was detectable in 60% of old KO mice. Occurrence of empty osteocyte lacunae did not differ between both groups, but a significantly higher number of osteoclast-like cells and fewer aromatase-positive osteocytes were found in old KO mice. Furthermore, female Nrf2-KO mice showed an age-dependently reduced fracture resilience when compared to age-matched WT mice. Our results confirmed lower bone quantity and quality as well as an increased number of bone resorbing cells in old female Nrf2-KO mice. Additionally, aromatase expression in osteocytes of old Nrf2-KO mice was compromised, which may indicate a chronic lack of estrogen in bones of old Nrf2-deficient mice. Thus, chronic Nrf2 loss seems to contribute to age-dependent progression of female osteoporosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 101 - 101
1 Nov 2021
Dubus M Varin-Simon J Papa S Gangloff S Mauprivez C Ohl X Reffuveille F Kerdjoudj H
Full Access

Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Materials and Methods. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from orthopaedic implant-associated infection (Ci). The infective capabilities of both strains was determined following gentamicin-based antibiotic protection assay. The morphology and ultrastructural analysis of infected MSCs was performed respectively through CLSM pictures of Phalloidin. ®. stained MSCs cytoskeleton and DAPI labelled Cb, and transmission and scanning electron microscopies. The virulence of intracellular Ci and Cb (Ci-MSCs and Cb-MSCs) was investigated by biofilm formation on non-living bone materials; and the immunomodulatory response of infected MSCs was investigated (PGE-2 and IDO secretion detected by ELISA). Bone cells (osteoblasts and PMA differentiated macrophages) were then challenged with Cb-MSCs and Ci-MSCs. Intracellular accumulation of ROS within infected macrophages was assessed by flow cytometry after 2 h of infection and the catalase production by Cb-MSC and Ci-MSC was evaluated. Statistical analyses were performed using Mann & Whitney test. Results. Following MSCs infection by C. acnes, the rate of viable bacteria inside MSCs was about 4% and 6% for Cb and Ci, respectively. Cb showed however a lower invasiveness in comparison to Ci (0.6-fold, p=0.01), confirming the higher pathogenicity of Ci. The ultrastructural and morphology analysis of infected MSCs confirmed the presence of bacteria free in MSCs cytoplasm, localized between F-actin fibers of MSCs, which preserved their elongated morphology. Considering the high level of secreted immunomodulatory mediators (PGE-2 and IDO), our results suggest that Cb-infected MSCs could promote a transition of macrophages from a primarily pro-inflammatory M1 to a more anti-inflammatory M2 phenotype. In comparison with Cb, Cb-MSCs increased significantly the formation of biofilm on TA6V and PEEK but reduced the biofilm formation on 316L SS. Ci-MSCs showed a significant increase in biofilm formation on PEEK vs Ci, while no difference in biofilm formation was noticed on TA6V and 316L SS. Regarding the ability of MSCs bacteria to infect osteoblasts, our results showed a higher infective capabilities of Cb-MSCs versus Cb (>2-fold, p=0.02), while no difference was noticed between Ci and Ci-MSCs. Along with an increase in catalase production by Cb-MSCs, we noticed its higher persistence to macrophage degradation. Conclusions. Taken together, our results demonstrate a shift in commensal Cb to pathogenic following infection. Indeed, Cb- MSCs acquires features that (i) increase biofilm formation on orthopedic based materials, (ii) increase the osteoblast infection and (iii) develop resistance to the macrophage degradation, through the increase of catalase production. Overall, these results showed a direct impact of C. acnes on bone marrow derived MSCs, providing new insights into the development of C. acnes during implant-associated infections


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 18 - 18
1 Dec 2020
Paiva STS O’Brien FJ Murphy CM
Full Access

Bone remodelling is mediated through the synchronism of bone resorption (catabolism) by osteoclasts and bone formation (anabolism) by osteoblasts. Imbalances in the bone remodelling cycle represent an underling cause of metabolic bone diseases such as osteoporosis, where bone resorption exceeds formation (1). Current therapeutic strategies to repair osteoporotic bone fractures focus solely in targeting anabolism or supressing catabolism (2). However, these therapeutics do not reverse the structural damage present at the defect site, ultimately leading to impaired fracture healing, making the repair of osteoporotic fractures particularly challenging in orthopaedics. Herein, we focus on investigating a combined versatile pro-anabolic and anti-catabolic effect of Magnesium (Mg. 2+. ) to modulate bone cell behaviour (3), to develop an engineered biomimetic bio-instructive biomaterial scaffold structurally designed to enhance bone formation while impeding pathological osteoclast resorption activities to facilitate better bone healing and promote repair. Pre-osteoblasts MC3T3-E1 (OBs) and osteoclasts progenitors RAW 264.7 (OCs) cell lines were cultured in growth media exposed to increasing concentrations of MgCl. 2. (0, 0.5, 1, 10, 25 and 50mM) and the optimal concentration to concurrently promote the differentiation of OBs and inhibit the differentiation or funtion of RANKL-induced OCs was assessed. We next used Fluorescence Lifetime Imaging Microscopy to investigate changes in the metabolic pathways during OBs and OCs differentiation when exposed to increasing MgCl. 2. concentrations. We developed a range of magnesium-incorporated collagen scaffolds to permit the spatiotemporal release of Mg. 2+. within the established therapeutic window, and to investigate the behaviour of bone cells in a 3D environment. In our results, we reported an increase in the expression of the bone formation markers osteocalcin and osteopontin for OBs exposed to 10mM MgCl. 2. , and a significant downregulation of the osteoclast-specific markers TRAP and cathepsin K in RANKL-induced OCs differentiation when exposed to 25mM MgCl. 2. Moreover, 25mM MgCl. 2. induced changes in the energy metabolism of OCs from a predominantly oxidative phosphorylation towards a more glycolytic pathway suggesting a regulatory effect of Mg. 2+. in the underlying mechanisms of osteoclasts formation and function. The developed porous collagen-magnesium scaffolds significantly reduced the expression of early osteoclastogenic markers RANK and NFkB, and an elevated expression of the osteogenic markers Runx2 and Col1A1 was reported after 7 days. Our research to date has provided evidences to demonstrate the potential of Mg. 2+. to concurrently enhance osteogenesis while inhibiting osteoclastogenesis in vitro, potentially introducing new targets for developing therapies to repair osteoporotic bone fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 40 - 40
4 Apr 2023
Evrard R Maistriaux L Manon J Rafferty C Cornu O Gianello P Lengelé B Schubert T
Full Access

The purpose of this study is to enhance massive bone allografts osseointegration used to reconstruct large bone defects. These allografts show >50% complication rate requiring surgical revision in 20% cases. A new protocol for total bone decellularisation exploiting the vasculature can offer a reduction of postoperative complication by annihilating immune response and improving cellular colonization/ osseointegration. The nutrient artery of 18 porcine bones - humerus/femur/radius/ulna - was cannulated. The decellularization process involved immersion and sequential perfusion with specific solvents over a course of one week. Perfusion was realized by a peristaltic pump (mean flow rate: 6ml/min). The benefit of arterial perfusion was compared to a control group kept in immersion baths without perfusion. Bone samples were processed for histology (HE, Masson's trichrome and DAPI for cell detection), immunohistochemistry (IHC : Collagen IV/elastin for intraosseous vascular system evaluation, Swine Leukocyte Antigen – SLA for immunogenicity in addition to cellular clearance) and DNA quantification. Sterility and solvent residues in the graft were also evaluated with thioglycolate test and pH test respectively. Compared to native bones, no cells could be detected and residual DNA was <50ng/mg dry weight. Intramedullary spaces were completely cleaned. IHC showed the preservation of intracortical vasculature with channels bounded by Collagen IV and elastin within Haversian systems. IHC also showed a significant decrease in SLA signaling. All grafts were sterile at the last decellularization step and showed no solvent residue. The control group kept in immersion baths, paired with 6 perfused radii/ulnae, showed that the perfusion is mandatory to ensure complete decellularisation. Our results prove the effectiveness of a new concept of total bone decellularisation by perfusion. These promising results could lead to a new technique of Vascularized Composite Allograft transposable to pre-clinical and clinical models


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 45 - 45
11 Apr 2023
Hanetseder D Hruschka V Redl H Marolt Presen D
Full Access

Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs). ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. Three hBMSCs of different ages were cultured on engineered ECMs. Growth and differentiation responses were compared to tissue culture plastic, as well as to collagen and fibronectin coated plates. Decellularized ECMs contained collagens type I and IV, fibronectin, laminin and < 5% residual DNA, suggesting efficient cell elimination. Cultivation of young and aged hBMSCs on the hiPSC-ECM in osteogenic medium significantly increased hBMSC growth and markers of osteogenesis, including collagen deposition, alkaline phosphatase activity, bone sialoprotein expression and matrix mineralization compared to plastic controls and single protein substrates. In aged BMSCs, matrix mineralization was only detected in ECM cultures in osteogenic medium. Comparison of ECMs engineered from hiPSC-MPs and hBMSCs of different ages suggested similar structure, composition and potential to enhance osteogenic responses in aged BMSCs. Engineered ECM induced a higher osteogenic response compared to specific matrix components. Our studies suggest that aged BMSCs osteogenic activity can be enhanced by culture on engineered ECM. hiPSCs represent a scalable cell source, and tissue engineering strategies employing engineered ECM materials could potentially enhance bone regeneration in elderly patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 67 - 67
17 Apr 2023
Sharp V Bury N Masieri F
Full Access

The development of a representative human, in vitro OA model could deepen understanding of disease mechanisms. Our research aimed to reprogram healthy and OA-derived synoviocytes to induced pluripotent stem cells (iPSCs), thereby generating a novel OA in vitro model. Comparison between the two models shall enable research into underlying processes with potential for clinical translation. A meta-analysis of OA synovial biomarkers was conducted, identifying up to thirteen relevant pathophysiology-related factors, including, amongst others, IL-13, IL-10, IL-6, PIICP, and HA, with PIICP demonstrating the largest effect (SMD 6.11 [3.50, 8.72], p <0.00001). With these findings in mind, human fibroblast-like synoviocytes (HFLS) from healthy and OA patients were transduced using Sendai viral reprogramming. Two clones for each of the resulting iPSC lines were expanded and preliminarily analysed in triplicate by ICC and RT-qPCR for pluripotency characteristics. Healthy HFLS-derived and OA-HFLS-derived iPSC (UoS-B and UoS-C lines, respectively) were generated, indicating successful reprogramming. Morphological observations demonstrated typical iPSC appearance, and ICC confirmed presence of pluripotency markers Tra-1-60, Oct3/4 and Nanog. Expression of Oct3/4, Nanog and Sox2 were confirmed by RT-qPCR with OA-iPSC lines expressing higher levels of all markers compared to non-OA iPSC. In particular, expression of Oct3/4 and Sox2 was 3.5 fold and 4.6 fold higher (p <0.001) in OA-iPSCs (UoS-C) vs. non-OA iPSCs (UoS-B), respectively. Sendai virus clearance was confirmed by passage 4. The successfully obtained OA and non-OA iPSCs can be differentiated towards mesenchymal lineages, including chondrocyte and bone progenitor cells, enabling phenotypic comparison and biomarker analysis as identified in meta-analysis. Cell bank dissemination of these cell lines could deepen further in vitro OA research, with potential impact for clinical translation via the identification of novel cellular and molecular targets


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 107 - 107
11 Apr 2023
Lee E Ko J Park S Moon J Im G
Full Access

We found that adipose stem cells are poorly differentiated into bone and that their ability to differentiate into bone varies from cell line to cell line. The osteogenic differentiation ability of the adipose stem cell lines was distinguished through Alzarin Red Staining, and the cell lines that performed well and those that did not were subjected to RNA-seq analysis. The selected gene GSTT1 (glutathione S-transferase theta-1) gene is a member of a protein superfamily that catalyzes the conjugation of reduced glutathione to a variety of hydrophilic and hydrophobic compounds. The purpose of this study is to treat avascular necrosis and bone defect by improving bone regeneration with adipose stem cells introduced with a new GSTT1 gene related to osteogenic differentiation of adipose stem cells. In addition, the GSTT1 gene has the potential as a genetic marker that can select a specific cell line in the development of an adipose stem cell bone regeneration drug. Total RNA was extracted from each sample using the TRIzol reagent. Its concentration and purity were determined based on A260 and A260/A280, respectively, using a spectrophotometer. RNA sequencing library of each sample was prepared using a TruSeq RNA Library Prep Kit. RNA-seq experiments were performed for hADSCs. Cells were transfected with either GSTT1 at 100 nM or siControl (scramble control) by electroporation using a 1050 pulse voltage for 30 ms with 2 pulses using a 10 μl pipette tip. The purpose of this study is to discover genetic markers that can promote osteogenic differentiation of adipose stem cells (hADSCs) through mRNA-seq gene analysis. The selected GSTT1 gene was found to be associated with the enhancement of osteogenic differentiation of adipose stem cells. siRNA against GSTT1 reduced osteogenic differentiation of hADSCs, whereas GSTT1 overexpression enhanced osteogenic differentiation of hADSCs under osteogenic conditions. In this study, GSTT1 transgenic adipose stem cells could be used in regenerative medicine to improve bone differentiation. In addition, the GSTT1 gene has important significance as a marker for selecting adipose stem cells with potential for bone differentiation in the development of a therapeutic agent for bone regeneration cells