Bioactive glasses (BAGs) are bone substitutes with bone bonding, angiogenesis promoting and antibacterial properties. The bioactive process leading to bone bonding has been described as a sequence of reactions in the glass and at its surface. Implantation of the glass is followed by a rapid exchange of Na+ in the glass with H+ and H3O+ from the surrounding tissue, leading to the formation of silanol (SiOH) groups at the glass surface. Due to migration of Ca2+ and PO43− groups to the surface and cystallization, a CaO-P2O5 hydroxyapatite (HA) layer is formed on top of the Si-rich layer. Finally, cell interactions with the HA layer subsequently initiate the bone forming pathway. The rapid increase in pH and the subsequent osmotic effect caused by dissolution of the glass have been suggested to partly explain the antibacterial properties observed for BAGs. Comparing bactericidal effects of different BAGs, BAG-S53P4 has been shown to be the most effective, with the fastest killing or growth inhibitory effect. This antibacterial effect has been observed in vitro for all pathogens tested, including the most important aerobic and anaerobic pathogens, as well as very resistant bacteria. In a multicentre study in 2007–2009, BAG-S53P4 was used as bone graft substitute in treatment of osteomyelitis. Eleven patients (nine males, two females) with a radiologically diagnosed osteomyelitis in the lower extremity (N=10) and in the spine (N-1) participated. In the operation, the infected bone and the soft tissue were removed, and the cavitary bone defects were filled with BAG-S53P4 (BonAlive™, Bonalive Biomaterials Ltd., Finland). In four patients, muscle flaps were used as part of the treatment. Eight patients were treated in a one-stage procedure. Kanamycin granules were used in one patient and Garamycin granules (Septocol ®) in two patients. Patient data were obtained from hospital patient' records until August 2010, resulting in a mean follow-up period of 29 months (range 15–43). BAG-S53P4 was well tolerated; no BAG-related adverse effects were seen in any patient. The use of BAG-S53P4 as a bone graft substitute resulted in a fast recovery. Long-term clinical outcome was good or excellent in ten of eleven patients. These primary results indicate that BAG-S53P4 can be considered as a good and usable material in treatment of osteomyelitis. After this study BAG-S53P4 has been used in several other patients with very promising results.
Aims. Demineralised bone matrix (DBM) is rarely used for the local
delivery of prophylactic antibiotics. Our aim, in this study, was
to show that a graft with a
Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout.Aims
Methods
We reviewed 59 bone graft substitutes marketed
by 17 companies currently available for implantation in the United Kingdom,
with the aim of assessing the peer-reviewed literature to facilitate
informed decision-making regarding their use in clinical practice.
After critical analysis of the literature, only 22 products (37%)
had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita),
Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question
the need for so many different products, especially with limited
published clinical evidence for their efficacy, and conclude that
there is a considerable need for further prospective randomised
trials to facilitate informed decision-making with regard to the
use of current and future bone graft substitutes in clinical practice. Cite this article:
A total of 20 patients with a depressed fracture
of the lateral tibial plateau (Schatzker II or III) who would undergo open
reduction and internal fixation were randomised to have the metaphyseal
void in the bone filled with either porous titanium granules or
autograft bone. Radiographs were undertaken within one week, after
six weeks, three months, six months, and after 12 months. The primary outcome measure was recurrent depression of the joint
surface: a secondary outcome was the duration of surgery. The risk of recurrent depression of the joint surface was lower
(p <
0.001) and the operating time less (p <
0.002) when titanium
granules were used. The indication is that it is therefore beneficial to use porous
titanium granules than autograft bone to fill the void created by
reducing a depressed fracture of the lateral tibial plateau. There
is no donor site morbidity, the operating time is shorter and the
risk of recurrent depression of the articular surface is less. Cite this article: