This is a case report of a 78 year old male who underwent outpatient mini-incision medial UKA using the haptic robotic guidance. The patient subsequently suffered a traumatic lateral meniscus tear and underwent a lateral compartment UKA with the same robotic system instead of converting to a total knee replacement at one year post op and is now 2 years post op on the lateral side as well. The patient is a 74 year old male with a BMI of 27, suffering from OA of the right knee. He had a previous TKA on his left side by another surgeon that was followed with a lateral release by still another surgeon with fair to good satisfaction currently; however he did not want another TKA. He had multiple aspirations and injections of corticosteroids for arthritic effusions on his right knee that were moderate to severe and painful. On 7/6/2010 he underwent a right medial UKA using with robotic guidance. The patient had a subsequent injury to his lateral meniscus causing pain for which multiple options were discussed with the patient. The informed patient chose to have a lateral compartment arthroplasty. On 6/21/2011 a lateral compartment UKA was performed on the same patient's right knee through a second mini-lateral incision again using robotic guidance.Introduction:
Methods:
Unicompartmental knee replacement (UKR) facilitates the use of smaller sized implants that require less bone resection and allows preservation of the anterior and posterior cruciate ligaments (ACL and PCL)[1]. Therefore, UKR preserves the intact kinematics and may improve the clinical outcomes especially compared to the outcomes of total knee replacement (TKA). Despite the known benefits of UKR in arthritis limited to one compartment, in multicompartment disease TKA remains the gold standard. Current TKA designs require the sacrifice of the ACL in all cases, whereas the surgeon can decide to use a cruciate sparing or substituting design altering normal knee kinematics. Performing bi-UKR or tri-UKR with traditional instruments is very challenging and rarely done due to the difficulty in establishing the correct spatial relationship of the separate components. Recent advances in robotic surgery have provided the opportunity to utilize partial knee replacements. The MAKO Rio platform is a surgeon-interactive robotic arm with haptic guidance that allows computer assisted planning and intraoperative accurate placement of multiple unicompartmental components including the bi-UKR. Currently there is a lack of understanding about the short-term and long-term clinical outcomes of the bi-UKR compared to the traditional TKA. The objective of the current study was to investigate the differences in the clinical outcomes of bi-UKR and TKA.INTRODUCTION:
OBJECTIVES:
Introduction. Traditional Total Knee Arthpolasty (TKA) replaces all 3 compartments of the knee for patients diagnosed with OA. There might be functional benefit to replacing only damaged compartments, and retaining the normal ligamentous structures. There is a long history of performing multi-compartment arthroplasty with discrete components. Laskin reported in 1976 that good pain relief and acceptable clinical results were achieved at two years in patients with bi-unicondylar knee replacement [Laskin 1976]. Other authors also have reported on