Advertisement for orthosearch.org.uk
Results 1 - 20 of 1293
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option. Cite this article: Bone Joint J 2013;95-B:166–72


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article: Bone Joint J 2024;106-B(4):312–318


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 45 - 45
1 Nov 2021
Sugano N Hamada H Takao M Ando W Uemura K Nakamura N
Full Access

The purposes of this study were to evaluate the accuracy and feasibility of a robotic preparation for acetabular metal augments in patients with developmental dysplasia of the hip (DDH). Mako robotic arm reaming was used in 7 DDH to prepare the bony cavities for both Trident PSL cups and Tritanium acetabular wedge augments in six hips with Crowe 2 or 3 DDH. In CT-based planning, a properly sized cup was placed in the original acetabulum, and the same sized cup was also placed to fit the superolateral acetabular defect. The coordinates of the planned positions of cup and augment were recorded to manage the robotic arm reaming. After registration of the patient's pelvis, robotic reaming was performed first for the augment, then, for the cup by changing the target position of reaming as planned. The accuracy of the cup and augment placement was assessed on postoperative CT. To evaluate the feasibility of the robotic procedure, the OR time and blood loss were compared with those of 13 patients who received the same cup and augment systems with a conventional technique. All procedures were done without fracture or fixation failure. There were no differences in OR time or blood loss between the two procedures. Postoperative CT measurements of the distance between the cup center and the augment sphere center showed less than 2mm difference from the Mako preoperative planning. Although a longer time of follow up evaluation is mandatory, our robotic acetabular augment preparation technique is accurate and feasible


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 54 - 58
1 May 2024
Wassilew GI Zimmerer A Fischer M Nonnenmacher L O'Hara L Hube R

Aims. The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. Methods. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0). Results. The cumulative medium-term survival of the acetabular construct was 89%. Two hips (5.1%) required further revision due to shell loosening, one hip (2.6%) due to shell dislocation, and one hip (2.6%) due to infection. The median Harris Hip Score improved significantly from 47 points (IQR 41.5 to 54.9) preoperatively to 80 points (IQR 73.5 to 88.6) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of Paprosky IIIB acetabular defects with porous tantalum shells and two augments using the ‘footing’ technique showed excellent medium-term results. It is a viable option for treating these challenging defects. Cite this article: Bone Joint J 2024;106-B(5 Supple B):54–58


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims. The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects. Patients and Methods. A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis. Results. There were 36 (87.8%) patients with a Paprosky IIIA defect and five (12.2%) patients with a Paprosky IIIB defect. The mean age was 56.7 years (28 to 94). There were 21 (51.2%) women and 20 (48.8%) men. The mean follow-up was 39.4 months (12 to 96). One (2%) patient died after eight years. No failures were noted in the series. The mean survivorship was 100% at the time of latest follow-up. Conclusion. The results of this multicentre study showed encouraging short- and mid-term results for the use of TM augments in the management of Paprosky grade IIIA and IIIB defects. Cite this article: Bone Joint J 2018;100-B:903–8


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 106 - 106
1 Jul 2020
Dion C Lanting B Howard J Teeter M Willing R
Full Access

During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage eccentric loading protocol. Static eccentric (70% medial/ 30% lateral) loading of 2100 N was applied to the implants before and after subjecting them to 5×103 loading cycles of 700 N at 2 Hz using a joint motion simulator. Bone-implant micromotion was measured using a high-resolution optical system. The pTKA were removed. The proximal tibial bone defect was measured. One tibia from each pair was randomly allocated to the experimental group, and rTKA was performed with a titanium augment printed using selective laser melting. The contralateral side was assigned to the control group (revision with fully cemented stems). The three-stage eccentric loading protocol was used to test the revision TKAs. Independent t-tests were used to compare the micromotion between the two groups. After revision TKA, the mean micromotion was 23.1μm ± 26.2μm in the control group and 12.9μm ± 22.2μm in the experimental group. There was significantly less micromotion in the experimental group (p= 0.04). Prior to revision surgery, the control and experimental group had no significant difference in primary TKA micromotion (p= 0.19) and tibial bone loss (p= 0.37). This study suggests that early fixation stability of revision TKA with the novel 3D printed titanium augment is significantly better then the conventional fully cemented rTKA. The early press-fit fixation of the augment is likely sufficient for promoting bony ingrowth of the augment in vivo. Further studies are needed to investigate the long-term in-vivo fixation of the novel 3D printed augment


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion. At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials. Cite this article: Bone Joint Res 2024;13(6):279–293


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 311 - 316
1 Mar 2019
Löchel J Janz V Hipfl C Perka C Wassilew GI

Aims. The use of trabecular metal (TM) shells supported by augments has provided good mid-term results after revision total hip arthroplasty (THA) in patients with a bony defect of the acetabulum. The aim of this study was to assess the long-term implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. Patients and Methods. Between 2006 and 2010, 60 patients (62 hips) underwent acetabular revision using a combination of a TM shell and augment. A total of 51 patients (53 hips) had complete follow-up at a minimum of seven years and were included in the study. Of these patients, 15 were men (29.4%) and 36 were women (70.6%). Their mean age at the time of revision THA was 64.6 years (28 to 85). Three patients (5.2%) had a Paprosky IIA defect, 13 (24.5%) had a type IIB defect, six (11.3%) had a type IIC defect, 22 (41.5%) had a type IIIA defect, and nine (17%) had a type IIIB defect. Five patients (9.4%) also had pelvic discontinuity. Results. The overall survival of the acetabular component at a mean of ten years postoperatively was 92.5%. Three hips (5.6%) required further revision due to aseptic loosening, and one (1.9%) required revision for infection. Three hips with aseptic loosening failed, due to insufficient screw fixation of the shell in two and pelvic discontinuity in one. The mean Harris Hip Score improved significantly from 55 (35 to 68) preoperatively to 81 points (68 to 99) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of acetabular defects with TM shells and augments showed excellent long-term results. Supplementary screw fixation of the shell should be performed in every patient. Alternative techniques should be considered to address pelvic disconinuity. Cite this article: Bone Joint J 2019;101-B:311–316


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 84 - 84
1 Mar 2017
Pianigiani S Vignoni D Innocenti B
Full Access

Introduction. In revision TKA, the management of bone loss depends on location, type, and extent of bony deficiency. Treatment strategies involve cement filling, bone grafting and augments. On the market several solutions are currently available, differing for their shape, thickness and material. While the choice of the shape and the thickness is mainly dictated by the bone defect, no explicit guideline is currently available to describe the best choice of material to be selected for a specific clinical situation. However, the use of different materials could induce different response in term of bone stress and thus changes in implant stability that could worsen long-term implant performance. For these reasons, an investigation about the changes in bone stress in the femur and in the tibia when augments, with different materials and thicknesses was performed. Methods. Different configurations have been separately considered including proximal tibial, distal or/and posterior femoral augments with a thickness of 5, 10 and 15 mm. Apart the control, in which no augments were used, but only the TKA is considered, the augment in all the other configurations were considered made by three different materials: bone cement, to simulate cement filling, tantalum trabecular metal and conventional metal (titanium for the tibia and CoCr for the femoral augments). Each configuration was inserted on a lower leg model including a cruciate-retaining total knee arthroplasty and analyzed by means of finite element analysis applying the max force achieved during walking. The bone stress was investigated in the medial and lateral region of interest close to the augment (with a bone thickness of 10 mm) and in an additional bone region of interest of 50 mm thickness. The bone stress have been compared among the different models and also with respect to the control model. Results. In general, the use of an augment induces a change in bone stress, especially in the region close to the bone cuts. The stiffness of the augment must be as close as possible to the one of the bone. Cement has the best results in terms of bone stress, however, it is only suitable for extremely small defects. Tantalum trabecular metal has results very close to cement and it could be consider a good alternative to cement for any size of defect. Metal (both titanium and CoCr) has the least satisfying results inducing the highest change in bone stress with respect the control. Conclusions. Tibial and femoral bone augments are adopted in case of bone defects that could be present during a revision knee replacement. Several solutions are available on the market in different shapes and materials. However, very few studies are reported to provide possible guidelines. The results of this study demonstrate that material stiffness of the augment must be as close as possible to the one of the bone to achieve the best results


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 515 - 515
1 Dec 2013
Sabesan V Callanan M Sharma V
Full Access

Background. Total shoulder arthroplasty is technically demanding in regards to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior glenoid wear. Augmented glenoid implants are an important and innovative option; however, there is little evidence accessible to surgeons to guide in the selection of the appropriate size augmented glenoid. Methods. Solid computer models of a commercially available augmented glenoid components (+3, +5, +7) contained within the software allowed for placement of the best fit glenoid component within the 3D reconstruct of each patient's scapula. Peg perforation, amount of bone reamed and amount of medialization were recorded for each augment size. Results. There was strong correlation between the medialization of the joint line and the glenoid retroversion for each augmented component (R. 2. of 0.785 for the +3 augment, an R. 2. of 0.792 for the +5 component, and an R. 2. of 0.701 for the +7 component). The range of retroversion that restored anatomic joint line using the +3 augmented glenoid was −3° to −17°, −5° to −24° using the +5 augmented glenoid, and −9° to −31° for a +7 augmented glenoid. Conclusions. Our results provide a general guideline for clinicians to select an appropriate sized augmented glenoid implant based on range of glenoid retroversion that can be corrected to restore the native joint line and minimize peg perforation. There was a strong correlation between glenoid retroversion and medialization for all augment sizes supporting the recommendation for glenoid retroversion as the primary guide in selecting the amount of augmentation


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects. . Cite this article: Bone Joint J 2013;95-B, Supple A:103–8


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims. It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients. Patients and Methods. A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity. . Results. Three failures were observed in two hips, both of which had undergone a previous resection of a tumour affecting the acetabulum. Other complications included a late arterial injury, a sciatic nerve palsy, a dislocation treated with a femoral revision, a deep infection treated with irrigation and debridement and a fracture of the greater trochanter treated conservatively. The mean Oxford Hip Score significantly increased from 13.9 (2 to 23) to 28.7 (13 to 38) (p < 0.00001). The mean vertical distance between the centre of rotation of the hip and its normal location decreased from 30 mm to 10 mm. Conclusions. Acceptable early survivorship can be achieved using this novel technique, but it may be unsuitable for use in patients who have previously undergone the resection of a tumour involving the acetabulum. Cite this article: Bone Joint J 2017;99-B:607–13


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 68 - 68
1 Nov 2015
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Large prosthetic augments (cones); 7) Massive structural allograft-prosthetic composites (APC); 8) Custom implants. Maximizing support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Pre-operative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the pre-operative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intra-operative findings such as occult fracture through deficient periprosthetic bone. Reconstruction of bone deficiency following removal of the failed implant is largely dictated by the location and extent of bone loss and the quality of bone that remains. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions the degree of implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects especially of the cavitary sort may be well managed with minimal constraint


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 115 - 115
1 Feb 2015
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Large prosthetic augments (cones); 7) Massive structural allograft-prosthetic composites (APC); 8) Custom implants. Maximising support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Preoperative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the preoperative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intraoperative findings such as occult fracture through deficient periprosthetic bone. Reconstruction of bone deficiency following removal of the failed implant is largely dictated by the location and extent of bone loss and the quality of bone that remains. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions the degree of implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects especially of the cavitary sort may be well managed with minimal constraint


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 108 - 108
1 May 2014
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty. Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System. This system provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are as follows: 1) fill with cement, 2) fill with cement supplemented by screws or K-wires, 3) Morsellised bone grafting (for smaller, especially contained cavitary defects), 4) Small segment structural bone graft, 5) Impaction grafting, 6) Large prosthetic augments (cones), 7) Massive structural allograft-prosthetic composites (APC), 8) Custom implants. It is very helpful for revision surgeons to have a variety of reconstructive options available, even despite a well thought-out preoperative plan. Preoperative planning is important but the plan that results may require alteration during the course of the surgery to accommodate bone defects which are either less or more severe than thought pre-operatively, and to adjust to variable quality and extent of host bone remaining, as this provides the mechanical platform for the reconstruction. Maximising support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Bone defect management during revision total knee arthroplasty can provide a wide range of challenges from relatively trivial problems with small defects manageable with cement or small amounts of cancellous graft to massive deficiencies that may defy reconstruction except with allograft prosthetic components or large segmental replacing tumor-type implants. The more common Type II deficiencies increasingly seen in the context of particulate driven osteolysis demand a wide range of implant and bone graft options so that an individualised reconstruction can be accomplished for that particular patient based on bone defect size, location, quality of bone remaining, ligamentous status, and anticipated patient demands


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 109 - 109
1 May 2013
Barrack R
Full Access

The major causes of revision total knee are associated with some degree of bone loss. The missing bone must be accounted for to insure success of the revision procedure, to achieve flexion extension balance, restore the joint line to within a centimeter of its previous level, and to assure a proper sizing especially the anteroposterior diameter of the femoral component. In recent years, clinical practice has evolved over time with a general move away from a structural graft with an increase in utilisation of metal augments. Alternatives include cement with or without screw fixation, rarely, with the most common option being the use of metal wedges. With the recent availability of highly porous augments, the role of metal augmentation has increased. Bone graft is now predominantly used in particulate form for contained defects with more limited use of structural graft. The role of the allograft-prosthetic composite has become more limited. For the elderly with osteopenia and massive bone loss, complete metal substitution with an oncology prosthesis has become more common. The degree of bone loss is a major determinant of the management strategy. For contained defects less than 5 mm, cement alone, with or without screw supplementation, may be adequate. For greater than 5 mm, morselised graft is frequently used. For uncontained defects of up to 15 mm or more, metal augmentation is the first choice. Bone graft techniques can be utilised in this setting, however, these are more time consuming and technically demanding with little demonstrated advantage. For larger, uncontained defects, newer generation highly porous augments and step wedges are useful. Large contained defects can be dealt with utilising impaction grafting, similar to the hip impaction grafting technique. Massive distal defects are expeditiously managed with oncology defects in the case of periprosthetic fracture and/or massive osteolysis particularly when combined with osteopenia in an elderly, low demand patient. Surgeons must be familiar with an array of techniques in order to effectively deal with the wide spectrum of bone defects encountered during revision total knee arthroplasty


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 973 - 978
1 Jul 2017
Gupta S Kafchinski LA Gundle KR Saidi K Griffin AM Wunder JS Ferguson PC

Aims. Intercalary allografts following resection of a primary diaphyseal tumour have high rates of complications and failures. At our institution intercalary allografts are augmented with intramedullary cement and fixed using compression plating. Our aim was to evaluate their long-term outcomes. Patients and Methods. A total of 46 patients underwent reconstruction with an intercalary allograft between 1989 and 2014. The patients had a mean age of 32.8 years (14 to 77). The most common diagnoses were osteosarcoma (n = 16) and chondrosarcoma (n = 9). The location of the tumours was in the femur in 21, the tibia in 16 and the humerus in nine. Function was assessed using the Musculoskeletal Tumor Society (MSTS) scoring system and the Toronto Extremity Salvage Score (TESS). The survival of the graft and the overall survival were assessed using the Kaplan-Meier method. Results. The median follow-up was 92 months (4 to 288). The mean MSTS 87 score was 29.1 (19 to 35), the mean MSTS 93 score was 82.2 (50 to 100) and the mean TESS score was 81.2 (43 to 100). Overall survival of the allograft was 84.8%. A total of 15 patients (33%) had a complication. Five allografts were revised for complications and one for local recurrence. Conclusion. Intercalary allografts augmented with intramedullary cement and compression plate fixation provide a reliable and durable method of reconstruction after the excision of a primary diaphyseal bone tumour, with high levels of function and satisfaction. . Cite this article: Bone Joint J 2017;99-B:973–8


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1183 - 1189
1 Sep 2017
Cho BK Kim YM Choi SM Park HW SooHoo NF

Aims. The aim of this prospective study was to evaluate the intermediate-term outcomes after revision anatomical ankle ligament reconstruction augmented with suture tape for a failed modified Broström procedure. Patients and Methods. A total of 30 patients with persistent instability of the ankle after a Broström procedure underwent revision augmented with suture tape. Of these, 24 patients who were followed up for more than two years were included in the study. There were 13 men and 11 women. Their mean age was 31.8 years (23 to 44). The mean follow-up was 38.5 months (24 to 56) The clinical outcome was assessed using the Foot and Ankle Outcome Score (FAOS) and the Foot and Ankle Ability Measure (FAAM) score. The stability of the ankle was assessed using stress radiographs. Results. The mean FAOS and FAAM scores improved significantly to 87.5 (73 to 94) and 85.1 (70 to 95) points at final follow-up, respectively (p < 0.001). The mean angle of talar tilt and anterior talar translation improved significantly to 2.8° (0° to 6°) and 4.1 mm (2 to 7) at final follow-up, respectively (p < 0.001). Side to side comparison in stress radiographs at final follow-up showed no significant difference. The revision failed in one patient who underwent a further revision using allograft tendon. Conclusion. The revision modified Broström procedure augmented with suture tape is an effective form of treatment for recurrent instability of the ankle following a failed Broström procedure. This technique provides reliable stability and satisfactory clinical outcomes at intermediate-term follow-up. Cite this article: Bone Joint J 2017;99-B:1183–9


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 268 - 276
1 Mar 2024
Park JH Lee JH Kim DY Kim HG Kim JS Lee SM Kim SC Yoo JC

Aims

This study aimed to assess the impact of using the metal-augmented glenoid baseplate (AGB) on improving clinical and radiological outcomes, as well as reducing complications, in patients with superior glenoid wear undergoing reverse shoulder arthroplasty (RSA).

Methods

From January 2016 to June 2021, out of 235 patients who underwent primary RSA, 24 received a superior-AGB after off-axis reaming (Group A). Subsequently, we conducted propensity score matching in a 1:3 ratio, considering sex, age, follow-up duration, and glenoid wear (superior-inclination and retroversion), and selected 72 well-balanced matched patients who received a standard glenoid baseplate (STB) after eccentric reaming (Group B). Superior-inclination, retroversion, and lateral humeral offset (LHO) were measured to assess preoperative glenoid wear and postoperative correction, as well as to identify any complications. Clinical outcomes were measured at each outpatient visit before and after surgery.