Total hip and knee arthroplasty is known to have a significant blood loss averaging 3–4 g/dL. Historically, transfusion rates have been as high as 70%. Despite years of work to optimise blood management, some published data suggests that transfusion rates (especially with allogeneic blood) are rising. There is wide variability between surgeons as well, suggesting that varying protocols can influence transfusion rates. Multiple studies now associate blood transfusions with negative outcomes including increased surgical site infection, costs, and length of stay. Preoperative measures can be employed. Identify patients that are at increased risk of blood transfusion. Smaller stature female patients, have pre-operative anemia (Hgb less than 13.0 gm/dl), or are undergoing revision or bilateral surgery are at high risk. We identify these patients and check a hemoglobin preoperatively, using a non-invasive finger monitor for screening. For anemic patients, iron administration (oral or IV) can be given, along with Procrit/Epogen in select cases. Insurance coverage for that medication has been challenging. Intraoperative measures that have been linked to reduced postoperative transfusions include regional anesthesia and intraoperative hypotension (mean arterial pressure <60mm/hg). Lowering the surgical time by practicing efficient, organised, and quality surgery, along with leaving a dry field at the completion of surgery can reduce blood loss. Tranexemic acid (TXA) is an
Background. Tranexamic acid is an
Perioperative blood conservation remains an important topic today in order to reduce complications, improve function, and facilitate recovery after a total knee replacement (TKR). Studies have shown that the degree of postoperative anemia is related to an increase in complications. A greater blood loss and need for transfusion is associated with a higher risk of infection, a slower recovery process, increased morbidity to patients, as well as an increased cost to the health care system. Typical blood loss estimates range from 800cc to over 1700cc, when accounting not only for intraoperative but postoperative blood loss. Several strategies have been developed to help mitigate the risk of perioperative blood loss and need for subsequent transfusion. Firstly, preoperative measures such as vitamin and mineral supplementation can ensure the starting hemoglobin and red cell count are maximised. Additionally, erythropoietin can be helpful in refractory cases of preoperative anemia. Preoperative autologous blood donation was used extensively in the past, but has fallen out of favor due to its inefficiency and cost. Intraoperatively, measures such as the use of a tourniquet, meticulous technique, and expeditious surgery can help reduce blood loss. The most effective method, however, has been the use of tranexamic acid (TXA). TXA, an
Tranexamic acid (TEA), an
Despite improvements in surgical technique, blood loss continues to be an issue following TJR in 2013. Peri-operative blood loss averages between 1000 and 1500 cc during THR and TKR. Multiple methods have been employed in attempts to minimise this loss. Concepts such as hypotensive anesthesia, tourniquet use, intraoperative blood salvage and autologous pre-donation and postoperative re-infusion drains as well as the use of bipolar sealants, fibrin sprays and thrombin agents have been tried with varying degrees of success. Recently there has been a surge of interest in the use of
Perioperative blood conservation remains an important topic today in order to reduce complications, improve function, and facilitate recovery after a total knee replacement (TKR). Studies have shown that the degree of postoperative anemia is related to an increase in complications. A greater blood loss and need for transfusion is associated with a higher risk of infection, a slower recovery process, increased morbidity to patients, as well as an increased cost to the healthcare system. Typical blood loss estimates range from 800cc to over 1700cc, when accounting not only for intraoperative but postoperative blood loss. Several strategies have been developed to help mitigate the risk of perioperative blood loss and need for subsequent transfusion. Firstly, preoperative measures such as vitamin and mineral supplementation can ensure the starting hemoglobin and red cell count are maximised. Additionally, erythropoietin can be helpful in refractory cases of preoperative anemia. Preoperative autologous blood donation was used extensively in the past, but has fallen out of favor due to its inefficiency and cost. Intraoperatively, measures such as the use of a tourniquet, meticulous technique, and expeditious surgery can help reduce blood loss. The most effective method, however, has been the use of tranexamic acid (TXA). TXA, an
Total hip arthroplasty (THA) is associated with high intraoperative and postoperative blood loss.
Tranexamic acid is a potent
The risk of venous thrombo-embolism (VTE) is high in orthopedics. Oral direct factor Xa inhibitors have been introduced to help reduce the incidence of VTE. To reduce post-operative bleeding
The risk of venous thrombo-embolism (VTE) is high in orthopaedics. Oral direct factor Xa inhibitors have been introduced to help reduce the incidence of VTE. To reduce post-operative bleeding
Common reasons for higher-than-average cost for a total hip arthroplasty are prolonged patient hospitalisation, which can be caused by among other factors, bleeding complications. The incidence of perioperative anemia has direct costs (blood transfusions), but also numerous indirect costs such as longer hospital stays, poor performance in physical therapy, and the potential for blood-borne infection. The incidence of pre-operative anemia in patients undergoing total hip arthroplasty has been reported to be as high as 44%, while total peri-operative blood loss for total hip arthroplasty may average between 750 and 1,000 mL. Anemia negatively impacts length of stay, patient function during rehabilitation, and patient mortality. Transfusions carry well known risks, including infection and fatal anaphylaxis, which are important factors considering that the transfusion rate has been reported to be as high as 45% and that transfused patients receive, on average, two units of blood. Methods that have been described in the literature include pre-treatment with erythropoietin, pre-operative hemodilution with intra-operative blood salvage, surgical techniques such as gentle soft tissue handling and meticulous hemostasis, bipolar sealers, intravascular occlusion, hemostatic agents, and early removal of drains. Pharmacologic approaches include treatment with erythropoietin, iron and folate. Randomised trials have demonstrated reduction in the risk for transfusion in patients treated with erythropoietin. Several studies have established a once-weekly dosing schedule of 40,000 international units (300–600 IU/kg) to be effective, and synergism has been observed in patients treated in combination with iron (ferrous sulfate, 325 mg three times a day). Patients with hemoglobin values between 10 and 14 g/dL are most likely to benefit. Intra-operatively,
Orthopaedic surgeries are complex, frequently performed procedures associated with significant haemorrhage and perioperative blood transfusion. Given refinements in surgical techniques and changes to transfusion practices, we aim to describe contemporary transfusion practices in orthopaedic surgery in order to inform perioperative planning and blood banking requirements. We performed a retrospective cohort study of adult patients who underwent orthopaedic surgery at four Canadian hospitals between 2014 and 2016. We studied all patients admitted to hospital for nonarthroscopic joint surgeries, amputations, and fracture surgeries. For each surgery and surgical subgroup, we characterized the proportion of patients who received red blood cell (RBC) transfusion, the mean/median number of RBC units transfused, and exposure to platelets and plasma.Aims
Methods