Introduction: It is common practice to use additional antibiotics in bone cement for revision hip surgery. Ideally
Aims. Vancomycin is commonly added to acrylic bone cement during revision
arthroplasty surgery. Proprietary cement preparations containing
vancomycin are available, but are significantly more expensive.
We investigated whether the
Bone cements produced by different manufacturers vary in their mechanical properties and
Objectives. The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves
Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). Methods. The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and
Objectives. Investigate the incorporation of an antibiotic in bone cement using liposomes (a drug delivery system) with the potential to promote osseointegration at the bone cement interface whilst maintaining
Background. Additive manufacturing (AM) has created many new avenues for material and manufacturing innovation. In orthopaedics, metal additive manufacturing is now widely used for production of joint replacements, spinal fusion devices, and cranial maxillofacial reconstruction. Plastic additive manufacturing on the other hand, has mostly been utilized for pre-surgical planning models and surgical cutting guides. The addition of pharmaceuticals to additively manufactured plastics is novel, particularly when done at the raw material level. The purpose of this study was to prove the concept of
Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing.
Introduction. Vancomycin is commonly added to acrylic bone cement during revision arthroplasty surgery. Proprietary cement preparations containing vancomycin are available but significantly more expensive. We investigated whether the
Introduction: Bone cements produced by different manufacturers vary in their mechanical properties and
Intro. Calcium sulphate (CS) is a recent alternative for
Antibiotic-loaded PMMA spacers are used with increased frequency in two-stage revision arthroplasty. The release of aminoglycosides and vancomycin, the most commonly used antibiotics, is prompt, and concentrations are inhibitory. The release kinetic from PMMA bone cement shows a biphasic profile, consisting in an initially high and rapid drug release followed by a slower but sustained phase. However, this general profile of drug release kinetics from PMMA spacers in vitro may have great variability in terms of drug amount, modality, and duration of elution. Initial drug concentration, cement surface area and porosity are essential and well-known factors in determining the drug release. Moreover, viscosity, vacuum-preparation and the different technical characteristics of commercially available spacers are additional factors of variability. Industrial preformed spacers are considered superior to custom-made devices because of uniform mixing and standardized procedures. Spacers produced by different manufacturers vary in their mechanical properties and
Aim. The preparation of antibiotic-containing polymethyl methacrylate (PMMA), as spacers generates a high polymerization heat, which may affect their antibiotic activity; it is desirable to use bone cement with a low polymerization heat. Calcium phosphate cement (CPC) does not generate heat on polymerization, and comparative elution testings are reported that vancomycin (VCM)-containing CPC (VCM-CPC) exceeded the
In bone and joint infections, several materials can be used for local
The management of chronic osteomyelitis is fraught with difficulties; a multi-disciplinary team approach is recommended for optimum outcome. Thorough debridement, dead space management and organism targeted antibiotic therapy the gives best clinical results. Calcium sulphate beads impregnated with antibiotic is an absorbable option for prolonged local
The two-staged exchange for periprosthetic joint infection (PJI) has become the “gold standard” worldwide. Based on the first implementation of mixing antibiotics into bone cement by Prof. Buchholz in the 1970s, the ENDO-Klinik followed a distinct one staged exchange for PJI in over 85 % of all our infected cases until today. Looking carefully at current literature and guidelines for the PJI treatment, there is no clear evidence, that a two-staged procedure has a clearly higher success rate than a one-staged approach. Although postulated in relevant articles, most recommendations, e.g. duration of antibiotics, static vs. mobile spacer, interval of spacer retention, cemented vs. uncemented implant fixation, are based on Level IV to III evidence studies or expert opinions, rather than on prospective randomised or comparative data. Potentially a cemented one-stage exchange offers certain advantages, as mainly based on need for only one operative procedure, reduced antibiotics & hospitalization time and reduced relative overall costs. In order to fulfill a one-staged approach with the above described potential success, there are obligatory pre-, peri- and postoperative details, which need to be meticulously respected. The absolute mandatory infrastructural requirement is based on the clear evidence of the bacteria in combination with a distinct patient specific plan, by an experienced microbiologist, for following topical antibiotics in the bone cement with combined systemic antibiotics. Mandatory preoperative diagnostic testing is based on the joint aspiration with an exact identification of the bacteria. The presence of a positive bacterial culture and respective antibiogramm is essential, to specify the antibiotics loaded into the bone cement, which allows a high topical
Purpose: This study investigates the synergistic use of fusidic acid with vancomycin, and linezolid in poly-methylmethacrylate (PMMA) cement for the treatment of orthopedic MRSA and MRSE infections. Alone, Vancomycin is typically eluted in limited quantities from cement. The purpose of this study was to. combine FA and Vancomycin, and Linezolid alone in PMMA cement and characterize
The burden of periprosthetic joint infection (PJI) continues to rise and the management of this dreaded complication continues to pose challenges to the orthopaedic community. Dr Buchholz from the Endo Klinik has been credited for reporting the initial observation that addition of antibiotic to polymethylmethacrylate (PMMA) cement lead to better ability to deliver higher concentrations of antibiotic to the joint milieu and avoid administration of high doses of systemic antibiotics with potential for systemic toxicity. Addition of antibiotics to PMMA cement has continued to be an important aspect of managing patients with chronic PJI. The rationale for this practice is that higher doses of local antibiotics can be reached without placing the patients at risk of systemic toxicity. Whether a one-stage or a two-stage exchange arthroplasty is being performed, antibiotics that can withstand the exothermic reaction of PMMA and are able to elude from cement are added at various doses to the PMMA for later delivery. Although this practice continues to be almost universal, there are a few unknowns. First of all, a recent study raised a valid question regarding this practice. Though intuitively logical, addition of antibiotics to PMMA spacers has not been scrutinised by any level 1 study and hence one is not able to prove that this practice does indeed accomplish its intended objectives of reducing recurrence or persistence of infection. Orthopaedic community is advised to seek avenues to generate this much-needed evidence. The other main unknown is how much, and in some instances which antibiotic, needs to be added to the PMMA cement. Some authorities have declared that antibiotics can be added at high doses, with an average total dose of 10.5 g of vancomycin (range, 3–16 g) and 12.5 g of gentamicin (range, 3.6–19.2 g) in one study, to PMMA cement without the fear of systemic toxicity. In recent years, renal toxicity and other systemic adverse effects have been attributed to addition of high doses of antibiotics to cement. I have personally witnessed such adverse reactions in a few patients. Although initially I was inclined to “blame” the concurrent administration of systemic antibiotics for the renal toxicity that patients developed following insertion of spacer, selective nephrotoxicity (i.e. reaction to aminoglycoside that was only present in the spacer and not systemically administered) and resolution of the nephrotoxicity upon removal of antibiotic spacer, convinced me that our nephrology colleagues have a valid reason to be concerned about addition of high doses of antibiotics to PMMA spacers. What has become clear is that high viscosity cements containing MA-MMA copolymers have been shown to have better
The two-staged exchange for periprosthetic joint infection (PJI) has become the “gold standard” worldwide. Based on the first implementation of mixing antibiotics into bone cement by Prof. Buchholz in the 70's, the ENDO-Klinik followed a distinct one-staged exchange for PJI in over 85% of all our infected cases until today. Looking carefully at current literature and guidelines for the PJI treatment, there is no clear evidence, that a two-staged procedure has a clearly higher success rate than a one-staged approach. Although postulated in relevant articles, most recommendations, e.g. duration of antibiotics, static vs. mobile spacer, interval of spacer retention, cemented vs. uncemented implant fixation, are based on level IV to III evidence studies or expert opinions, rather than on prospective randomised or comparative data. Potentially a cemented one-stage exchange offers certain advantages, as mainly based on need for only one operative procedure, reduced antibiotics & hospitalization time and reduced relative overall costs. In order to fulfill a one-staged approach with the above described potential success, there are obligatory pre-, peri- and post-operative details, which need to be meticulously respected. The absolute mandatory infrastructural requirement is based on the clear evidence of the bacteria in combination with a distinct patient specific plan, by an experienced microbiologist, for the topical antibiotics in the bone cement with combined systemic antibiotics. Mandatory pre-operative diagnostic testing is based on the joint aspiration with an exact identification of the bacteria. The presence of a positive bacterial culture and respective antibiogramm is essential, to specify the antibiotics loaded to the bone cement, which allows a high topical
BACKGROUND. This scientific work is a non-interventional, experimental and prospective comparative study of two very high-viscosity PMMA bone cements: DePuy CMW 2G and Palacos® fast R+G. Reference product: Palacos® R+G. Fast-setting PMMA bone cements are used in the endoprothetics of the patella and knee (in Australia) and are also used to cement an artificial acetabulum (in the UK). Are there any differences regarding the characteristics of the two fast-setting PMMA bone cements?. MATERIALS AND METHODS. All cements were mixed as specified by the manufacturer and analysed on the following parameters: handling properties (mixing, waiting, working and hardening phase), powder/liquid-ratio, mechanical properties (ISO 5833:2002 and DIN 53435), fatigue strength (ISO 16402) and elution profile. All tests were done in an acclimatised laboratory with temperatures set at 23.5°C ± 0.5°C and a humidity of >40%. Of two batch numbers, 11 units of each bone cement were tested. RESULTS AND DISCUSSION. The handling properties of the two tested PMMA bone cements Palacos® fast R+G and CMW 2G are highly similar (n=12). CMW 2G reaches the mixing and waiting phase approximately 20s later than Palacos® fast R+G. Palacos® fast R+G has a similar working, but a shorter hardening phase than CMW 2G. In addition, working with Palacos® fast R+G was advantageous due to its green dye. Palacos® fast R+G has a higher powder/liquid-ratio of 2.550. Due to the higher powder percentage, the cement has a shorter mixing and waiting phase than CMW 2G with a ratio of 2:1. Both analysed bone cements fulfil the quasi-static properties of ISO 5833:2002 and DIN 53435. Palacos® fast R+G was far superior in its ISO compressive strength (MPa) shown through one-way analysis of variance (ANOVA) (p<0.01) and independent two sample t-test (p<0.01) at 0.05 level of significance (n=20)(Fig. 1). CMW 2G has a higher quasi-static ISO bending strength (MPa) than Palacos® fast R+G, but the same test shows a much higher fatigue strength (ISO 16402) of Palacos® fast R+G (n=5) (Fig. 2). Palacos® R+G and Palacos® fast R+G show a similar elution profile (n=3), whereas CMW 2G shows a much lower