Advertisement for orthosearch.org.uk
Results 1 - 20 of 382
Results per page:
Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1498 - 1501
1 Nov 2005
Grelsamer RP Dubey A Weinstein CH

The Q angle is an important determinant of patellar tracking, though its clinical relevance is debatable. One controversy centres around any possible differences in its value between men and women. The accepted, though unproven explanation, for the greater Q angle in women is that a woman has a wider pelvis. However, because of the long distance between the pelvis and patella, relative to the distance from the patella to the tibial tuberosity, large changes in the position of the anterior superior iliac spine are necessary to effect significant changes in the Q angle. In our study of 69 subjects, we did not find such large differences in the position of the anterior superior iliac spine, and found a mean difference of only 2.3° between the Q angles of men and women. Furthermore, we found that men and women of equal height demonstrated similar Q angles, with taller people having slightly smaller Q angles. The slight difference in Q angles between men and women can be explained by the fact that men tend to be taller


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 743 - 751
1 Jun 2014
Shin YS Ro KH Jeon JH Lee DH

We used immediate post-operative in vivo three-dimensional computed tomography to compare graft bending angles and femoral tunnel lengths in 155 patients who had undergone single-bundle reconstruction of the anterior cruciate ligament using the transtibial (n = 37), anteromedial portal (n = 72) and outside-in (n = 46) techniques. The bending angles in the sagittal and axial planes were significantly greater but the coronal-bending angle was significantly less in the transtibial group than in the anteromedial portal and outside-in groups (p < 0.001 each). The mean length of the femoral tunnel in all three planes was significantly greater in the transtibial group than the anteromedial portal and outside-in groups (p < 0.001 each), but all mean tunnel lengths in the three groups exceeded 30 mm. The only significant difference was the coronal graft- bending angle in the anteromedial portal and outside-in groups (23.5° vs 29.8°, p = 0.012). Compared with the transtibial technique, the anteromedial portal and outside-in techniques may reduce the graft-bending stress at the opening of the femoral tunnel. Despite the femoral tunnel length being shorter in the anteromedial portal and outside-in techniques than in the transtibial technique, a femoral tunnel length of more than 30 mm in the anteromedial portal and outside-in techniques may be sufficient for the graft to heal. . Cite this article: Bone Joint J 2014;96-B:743–51


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1162 - 1166
1 Nov 2000
Davies AP Costa ML Donnell ST Glasgow MM Shepstone L

Anterior knee pain due to dysplasia of the extensor mechanism is common. We have studied 137 knees (103 patients) in order to identify a rapid and reproducible radiological feature which would indicate the need for further analysis. Overall, 67 knees (49%) had at least one radiological abnormality; 70 (51%) were considered normal. There were five cases of Dejour type-3 dysplasia of the femoral trochlea, nine of type-2 and 12 of type-1. There were 49 cases of patella alta and five of patella infera. Four knees had an abnormal lateral patellofemoral angle (patellar tilt), and in 15 knees there was more than one abnormality. Classification of trochlear dysplasia was difficult and showed poor reproducibility. This was also true for the measurement of the lateral patellofemoral angle. Patellar height was more easily measured but took time. The sulcus angle is an easily and rapidly measurable feature which was reproducible and was closely related to other features of dysplasia of the extensor mechanism. The finding of a normal sulcus angle suggested that seeking other radiological evidence of malalignment of the extensor mechanism was unlikely to reveal additional useful information. The severity of other features of dysplasia of the extensor mechanism correlated with increasing sulcus angle


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 911 - 914
1 Jul 2007
Khan WS Nokes L Jones RK Johnson DS

We describe the influence of the angle of immobilisation during partial weight-bearing on the forces across the extensor mechanism of the knee. Gait analysis was performed on eight healthy male subjects with the right knee in an orthotic brace locked at 0°, 10°, 20° and 30°, with the brace unlocked and also without a brace. The ground reaction force, the angle of the knee and the net external flexion movement about the knee were measured and the extensor mechanism force was calculated. The results showed a direct non-linear relationship between the angle of knee flexion and the extensor mechanism force. When a brace was applied, the lowest forces occurred when the brace was locked at 0°. At 30° the forces approached the failure strength of some fixation devices. We recommend that for potentially unstable injuries of the extensor mechanism, when mobilising with partial weight-bearing, the knee should be flexed at no more than 10°


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


Aims. Total knee arthroplasty (TKA) may provoke ankle symptoms. The aim of this study was to validate the impact of the preoperative mechanical tibiofemoral angle (mTFA), the talar tilt (TT) on ankle symptoms after TKA, and assess changes in the range of motion (ROM) of the subtalar joint, foot posture, and ankle laxity. Methods. Patients who underwent TKA from September 2020 to September 2021 were prospectively included. Inclusion criteria were primary end-stage osteoarthritis (Kellgren-Lawrence stage IV) of the knee. Exclusion criteria were missed follow-up visit, post-traumatic pathologies of the foot, and neurological disorders. Radiological angles measured included the mTFA, hindfoot alignment view angle, and TT. The Foot Function Index (FFI) score was assessed. Gait analyses were conducted to measure mediolateral changes of the gait line and ankle laxity was tested using an ankle arthrometer. All parameters were acquired one week pre- and three months postoperatively. Results. A total of 69 patients (varus n = 45; valgus n = 24) underwent TKA and completed the postoperative follow-up visit. Of these, 16 patients (23.2%) reported the onset or progression of ankle symptoms. Varus patients with increased ankle symptoms after TKA had a significantly higher pre- and postoperative TT. Valgus patients with ankle symptoms after TKA showed a pathologically lateralized gait line which could not be corrected through TKA. Patients who reported increased ankle pain neither had a decreased ROM of the subtalar joint nor increased ankle laxity following TKA. The preoperative mTFA did not correlate with the postoperative FFI (r = 0.037; p = 0.759). Conclusion. Approximately one-quarter of the patients developed ankle pain after TKA. If patients complain about ankle symptoms after TKA, standing radiographs of the ankle and a gait analysis could help in detecting a malaligned TT or a pathological gait. Cite this article: Bone Joint J 2023;105-B(11):1159–1167


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 74 - 74
7 Aug 2023
Alabdullah M Liu A Xie S
Full Access

Abstract. Rehabilitation exercise is critical for patients’ recovery after knee injury or post-surgery. Unfortunately, adherence to exercise is low due to a lack of positive feedback and poor self-motivation. Therefore, it is crucial to monitor their progress and provide supervision. Inertial measurement unit (IMUs) based sensing technology can provide remote patient monitoring functions. However, most current solutions only measure the range of knee motion in one degree of freedom. The current IMUs estimate the orientation-angle based on the integrated raw data, which might lack accuracy in measuring knee motion. This study aims to develop an IMU-based sensing system using the absolute measured orientation-angle to provide more accurate comprehensive monitoring by measuring the knee rotational angles. An IMU sensing system monitoring the knee joint angles, flexion/extension (FE), adduction/abduction (AA), and internal/external (IE) was developed. The accuracy and reliability of FE measurements were validated in human participants during squat exercise using measures including root mean square error (RMSE) and correlation coefficient. The RMSE of the three knee angles (FE, AA, and IE) were 0.82°, 0.26°, and 0.11°, which are acceptable for assessing knee motion. The FE measurement was validated in human participants and showed excellent accuracy (correlation coefficient of 0.99°). Further validation of AA and IE in human participants is underway. The sensing system showed the capability to estimate three knee rotation angles (FE, AA, and IE). It showed the potential to provide comprehensive continuous monitoring for knee rehabilitation exercises, which can also be used as a clinical assessment tool


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). Methods. The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types. Results. A very high concentration, 191 from 214 individuals (89.3%), were found in knee types with apex distal JLO when the CPAK classification was applied in the Asian population. By using aJLO as a new variable, the high distribution percentage in knee types with apex distal JLO decreased to 125 from 214 individuals (58.4%). The most common types in order were Type II (n = 70; 32.7%), Type V (n = 55; 25.7%), and Type I (n = 46; 21.5%) in the modified CPAK classification. Conclusion. The modified CPAK classification corrected the uneven distribution when applying the CPAK classification in the Asian population. Setting individualized TKA alignment targets according to CPAK type may be a practical method to recreate optimal LDFA and MPTA in KA-TKA. Cite this article: Bone Jt Open 2022;3(3):211–217


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 16 - 16
7 Aug 2023
Arthur L Amin A Rahman A Tu SJ Mellon S Murray D
Full Access

Abstract. Introduction. Anecdotal reports suggest some cementless Oxford Unicompartmental Knee Replacements (OUKRs) have painful early subsidence of the tibial component with valgus rotation and/or posterior tilting. The incidence of subsidence and its association with pain is poorly understood. This radiographic study aimed to evaluate the incidence of tibial subsidence and five-year patient reported outcome measures (PROMs) of a cementless OUKR cohort. Methodology. Cementless OUKRs from a high-volume centre with acceptable post-operative and five-year radiographs were included. Subsidence was determined by measuring the angle of the tibial tray/tibial axis angle and distance between the tibial tray axis and fibula head on anteroposterior and lateral radiographs using a custom MATLAB program. Analysis of 5-year PROMs assessed the relationship between subsidence and pain. Radiographs indicating tibial subsidence were validated by two observers. Results. Radiographs of 94 cementless OUKRs were analysed of which five tibial components had subsided (incidence=5%) with an average of 1.92° varus rotation and 2.97° posterior tilt. Subsidence appeared to occur within the first post-operative year with all tibial components fixed securely at 5 years. Two subsiders had moderate pain (ICOAP=20.5,15.9, AKSS Pain=20,45) and lower Oxford Knee Scores (OKS=26,31) compared to the cohort means (ICOAP=3.91, AKSS Pain=45.9, OKS = 43.6). These two subsiders had BMIs greater than 30. Conclusion. This study found 5% of cementless OUKRs in the cohort underwent tibial subsidence. Subsidence with moderate pain occurred in 2% of cases, and pain may be associated with obesity. A larger study is needed to study subsidence in greater detail


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 77 - 77
7 Aug 2023
Borque K Han S Gold J Sij E Laughlin M Amis A Williams A Noble P Lowe W
Full Access

Abstract. Introduction. Historic MCL reconstruction techniques focused on the superficial MCL to restore valgus stability while overlooking tibial external rotation and the deep MCL. This study assessed the ability of a contemporary medial collateral ligament (MCL) reconstruction and a deep MCL (dMCL) reconstruction to restore rotational and valgus knee stability. Methods. Six pairs fresh-frozen cadaveric knee specimens with intact soft tissue were tested in four states: 1) intact 2) after sMCL and dMCL sectioning, 3) contemporary MCL reconstruction (LaPrade et al), and 4) dMCL reconstruction. In each state, four loading conditions were applied at varying flexion angles: 8Nm valgus torque, 5Nm tibial external rotation torque, 90N anterior drawer, and combined 90N anterior drawer plus 5Nm tibial external rotation torque. Results. Transection of the sMCL and dMCL resulted in increased laxity with valgus torque, external rotation torque, and combined anterior drawer plus external rotation. dMCL reconstruction restored external rotation stability to intact levels throughout all degrees of flexion but did not restore valgus stability at any flexion angle. Contemporary MCL reconstruction restored valgus and external rotation stability at 0° and 20° and valgus stability at 40°. In the combined anterior drawer plus tibial external rotation trial, the dMCL restored stability at 20° and improved stability between 40° and 90° flexion. Conversely, the contemporary MCL reconstruction did not restore stability at any degree of flexion. Conclusion. Deep MCL reconstruction restored rotational stability to the knee throughout range of motion but not valgus stability. The contemporary MCL reconstruction restored stability only near full extension


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims. We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry. Methods. In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements. Results. OpenPose had excellent test-retest reliability (intraclass correlation coefficient (1,1) = 1.000). The R. 2. of all regression models indicated large correlations (0.747 to 0.927). In the flexion position, the intraclass correlation coefficients (2,1) of OpenPose indicated excellent agreement (0.953) with radiography. In the extension position, the intraclass correlation coefficients (2,1) indicated good agreement of OpenPose and radiography (0.815) and moderate agreement of goniometry with radiography (0.593). OpenPose had no systematic error in the flexion position, and a 2.3° fixed error in the extension position, compared to radiography. Conclusion. OpenPose is a reliable and valid tool for measuring flexion and extension positions after TKA. It has better accuracy than goniometry, especially in the extension position. Accurate measurement values can be obtained with low error, high reproducibility, and no contact, independent of the examiner’s skills. Cite this article: Bone Joint Res 2023;12(5):313–320


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 240 - 248
1 Mar 2024
Kim SE Kwak J Ro DH Lee MC Han H

Aims. The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique. Methods. This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCA. PD. ), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves. Results. Patients in whom the medial joint opening was achieved had significantly better postoperative PROMs compared with those without medial opening (all p < 0.05). Patients who were outliers with deviation of > 10% from the target mechanical axis deviation had significantly similar PROMs compared with patients with an acceptable axis deviation (all p > 0.05). Medial joint opening was affected by postoperative mechanical axis deviation and JLCA. PD. The influence of JLCA. PD. on postoperative axis deviation was more pronounced in a closing wedge than in an opening wedge HTO. Conclusion. Medial joint opening rather than the mechanical axis deviation determined the clinical outcome in patients who underwent HTO. The JLCA. PD. identified the optimal postoperative axis deviation necessary to achieve medial joint opening. For patients with increased laxity, lowering the target axis deviation is recommended to achieve medial joint opening. The target axis deviation should also differ according to the technique of undergoing HTO. Cite this article: Bone Joint J 2024;106-B(3):240–248


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims. While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA. Methods. A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations. Results. The mean aHKA and JLO increased by 0.1° (SD 3.4°) and 5.8° (SD 3.5°), respectively, from pre- to postoperatively. The most common phenotypes shifted from 76.3% CPAK Types I, II, or III (apex distal JLO) preoperatively to 85.0% IV, V, or VI (apex horizontal JLO) postoperatively. The proportion of knees with apex proximal JLO increased from 0.7% preoperatively to 11.1% postoperatively. Among all MA TKAs, 60.0% (420 knees) were changed from their constitutional alignments into CPAK Type V, while 40.0% (280 knees) either remained in constitutional Type V (5.0%, 35 knees) or were unintentionally aligned into other CPAK types (35.0%; 245 knees). Conclusion. Fixed MA targets in TKA lead to substantial changes from constitutional alignment, primarily a significant increase in JLO. These findings enhance our understanding of alignment alterations resulting from both unintended changes to knee phenotypes and surgical resection imprecision. Cite this article: Bone Jt Open 2024;5(2):109–116


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims. Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. Methods. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks. Results. IA celecoxib resulted in greater mean PEA at ten weeks (69.6° (SD 4.6) vs 45.2° (SD 9.6), p = 0.004), 16 weeks (109.8° (SD 24.2) vs 60.9° (SD10.9), p = 0.004), and 24 weeks (101.0° (SD 8.0) vs 66.3° (SD 5.8), p = 0.004). Capsular stiffness was significantly reduced with IA celecoxib (2.72 Newton per cm (N·cm)/° (SD 1.04), p = 0.008), capsular release (2.41 N·cm/° (SD 0.80), p = 0.008), and capsular release combined with IA celecoxib (3.56 N·cm/° (SD 0.99), p = 0.018) relative to IA vehicle (6.09 N·cm/° (SD 1.64)). Conclusion. IA injections of a celecoxib led to significant improvements in passive extension angles, with reduced capsular stiffness, when administered to rabbit knees with established experimental contracture. Celecoxib was superior to surgical release, and the combination of celecoxib and a surgical release did not provide any additional value. Cite this article: Bone Joint Res 2022;11(1):32–39


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims. Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. Methods. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition. Results. Mid-level inserts reduced varus angulations compared to PS inserts by a median of 0.4°, 0.9°, and 1.5° at 0°, 30°, and 90° of flexion, respectively, and reduced valgus angulations by a median of 0.3°, 1.0°, and 1.2° (p ≤ 0.027 for all comparisons). Mid-level inserts reduced net IE rotations by a median of 5.6°, 14.7°, and 17.5° at 0°, 30°, and 90°, respectively (p = 0.012). Mid-level inserts reduced anterior tibial translation only at 90° of flexion by a median of 3.0 millimetres (p = 0.036). With an applied varus moment, the mid-level insert decreased LCL force compared to the PS insert at all three flexion angles that were tested (p ≤ 0.036). In contrast, with a valgus moment the mid-level insert did not reduce MCL force. With an applied internal rotation moment, the mid-level insert decreased LCL force at 30° and 90° by a median of 25.7 N and 31.7 N, respectively (p = 0.017 and p = 0.012). With an external rotation moment, the mid-level insert decreased MCL force at 30° and 90° by a median of 45.7 N and 20.0 N, respectively (p ≤ 0.017 for all comparisons). With an applied anterior load, MCL and LCL forces showed no differences between the two inserts at 30° and 90° of flexion. Conclusion. The mid-level insert used in this study decreased coronal and axial plane laxities compared to the PS insert, but its stabilizing benefit in the sagittal plane was limited. Both mid-level and PS inserts depended on the MCL to resist anterior loads during a simulated clinical exam of anterior laxity. Cite this article: Bone Jt Open 2023;4(6):432–441