Allograft materials have been the mainstay in addressing bone deficiencies in knee and hip replacement and revision surgery for decades because of the associated donor site morbidity of autografts. Bone graft substitutes have been developed to address allograft issues including potential contamination, disease transmission, and availability. Although non-autogenous products have no osteogenic potential, they do have a variable degree of osteoinductive and osteoconductive properties. Unfortunately, there are limited reports regarding use of bone graft substitutes for use in total hip and knee arthroplasty. Bone graft substitutes have most frequently been used as an “extender”, in combination with morsellised allograft, to fill cavitary defects. Incorporation of this bone graft substitute and morsellised allograft combination appears to occur incompletely. Stable implant fixation appears to be a prerequisite for incorporation of bone graft substitutes, as these cannot be relied upon for structural support. Although bone graft substitutes appear to perform satisfactorily as “fillers” for contained cavitary bone defects, ultraporous metal augments have become the preferred method of providing structural support for some defects. In view of their substantial cost, high quality clinical, radiographic and retrieval data regarding performance of bone graft substitutes is needed.
Introduction. Reinforcement ring with
Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with
A radiation sterilisation dose (RSD) of 25 kGy is commonly recommended for sterilisation of
Fresh-frozen
BACKGROUND:. Bony increased-offset reverse shoulder arthroplasty (BIO-RSA) creates a long-necked scapula, providing the benefits of lateralization. Experience with allogenic bone grafting of the glenoid in shoulder arthroplasty is mainly based on its use with total shoulder arthroplasty (TSA). Therefore, our study objectives were: 1) verify if the use of BIO-RSA together with glenoid surface grafting with allogenic bone would provide similar benefits (clinical and functional) as found with autologous bone, 2) determine if allograft could be a good alternative in the absence of (good quality) autograft bone, and 3) to see if the allograft would incorporate with the native glenoid bone. METHODS:. We included 25 patients (19 female, 6 male) in this prospective study. Indications for BIO-RSA were: fracture sequalle (n = 9), revisions (n = 11), 4-part humerus fracture (n = 1), rheumatoid arthritis (n = 1) and cuff tear arthropathy (CTA) with poor humeral head bone quality/osteonecrosis (n = 3). Mean (± SD) age 70 ± 11 years (range, 44–86). Clinical evaluation consisted of ROM, Constant scores, patient satisfaction (Subjective Shoulder Value (SSV)) and noted complications. Radiographic and CT scan evaluation consisted of bone graft healing, bone graft resorption/lysis, glenoid component loosening, inferior scapular notching, spur formation and anterior/posterior scapular notching. Mean follow-up was 34 ± 10 months (24–62). RESULTS:. Mean active mobility improved from 50 ± 39° to 123 ± 33° (50–170°) for anterior elevation, from 2.4 ± 17° to 12.1 ± 16° (−20–40°) for external rotation, and from 1.8 ± 2 to 4.7 ± 3 points (0–8) for internal rotation. Mean Constant scores improved from 19 ± 12 to 55 ± 16 points (30–83) and from 26 ± 16% to 77 ± 24% (40–111%). Mean SSV from 21 ± 16% to 65 ± 18% (30–100%). One patient sustained an acromial fracture (treated conservatively) and one patient had breakage of screws and complete glenoid component loosening (revised to a hemi arthroplasty). In 92% of cases (23 of 25) the allograft incorporated completely, partial lysis of the bone graft (n = 5), inferior scapular notching (n = 5), spur formation (n = 7), posterior notching (n = 5). CONCLUSIONS:. BIO-RSA with allograft bone grafting does not provide the same clinical and functional results as with autologous bone grafting. However, it does provide a good alternative in cases where humeral bone stock is not preserved and the
Revision hip arthroplasty for excessive bone loss because of osteolysis or infection is difficult theme. Bone grafting is essential technique for bone loss and need of allograft is increasing. Recently, many hospital bone banks are established in Japan. The aim of this study is investigate efficacy and safety of allograft in our hospital bone bank. We evaluated management, result and complication of allografts retrieved from living donors in our institute.Background
Material and method
It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of
Abstract. Background. The aim of the present experimental study was to analyse vancomycin elution kinetics of nine bone fillers used in orthopaedic and trauma surgery over 42 consecutive days. Methods. Two
Aim. infected segmental bone defect (ISBD) is frequent in developing countries. The aim of this study was to assess the efficacy of the Masquelet technique in the treatment of ISBD in a low-resource setting. Patients and Method. We performed a prospective cohort study during the period from 2018 to 2022. Patients with infected bone defect of long bones were included. Management protocol consisted of two stages in all patients. The first stage consisted in debridement, tissues biopsy for microbiological culture, stabilization with external fixator and defect filling with gentamicin cement spacer. The second stage consisted of reconstruction using a cancellous bone autograft alone, or a mixture of autograft with
Purpose. The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for large bone defect. Method. Total 53 patients who have undergone revision TKA from July 2013 to March 2017 were enrolled in this study. Among them, 24 patients used trabecular metal cones, and 29 patients used femoral head
Introduction. The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock. History. The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group. Biology. The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularisation, incorporation and remodelling of morselised compacted cancellous allograft differs dramatically from structural
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodelling of the
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the
Introduction:. The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use of impaction allografting with cement. History:. The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group. Biology:. The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularization, incorporation and remodeling of morselised compacted cancellous allograft differs dramatically from structural
The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock. The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morsellised bone with cement on the femoral side was first reported by the Exeter group. The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularisation, incorporation and remodelling of morsellised compacted cancellous allograft differs dramatically from structural
Aim.
Femoral revision in cemented THA might include some technical difficulties, based on the loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration by incorporating and remodeling the
Fresh-frozen
Introduction. The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock. History. The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group. Biology. The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularization, incorporation and remodelling of morselised compacted cancellous allograft differs dramatically from structural