Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 122 - 122
1 May 2016
Maruyama M Koyama S
Full Access

BACKGROUND

During revision hip arthroplasty, removal of a well-fixed, ingrown metal acetabular component may not be possible. Therefore, a new polyethylene liner can be cemented into the existing shell via the cement locking mechanism. We report the indications, technique, and results of cementing an acetabular liner into a well-fixed cementless acetabular shell.

PATIENTS AND METHODS

All patients were given informed consent to participate in this study, and the study was approved by our hospital institutional review board. Of 95 revision total hip arthroplasty (THA) between 2005 and 2014, five hips in 5 patients (4 female and a male) were operated by the cemented socket into metal shell technique. The mean age was 70.6 years (range, 59–84 years) (Table 1).


We compared the rate of revision of two classes of primary anatomic shoulder arthroplasty, stemmed (aTSA) and stemless (sTSA) undertaken with cemented all polyethylene glenoid components. A large national arthroplasty registry identified two cohort groups for comparison, aTSA and sTSA between 1. st. January 2011 and 31. st. December 2020. A sub-analysis from 1 January 2017 captured additional patient demographics. The cumulative percentage revision (CPR) was determined using Kaplan-Meier estimates of survivorship and hazard ratios (HR) from Cox proportional hazard models adjusted for age and gender. Of the 7,533 aTSA procedures, the CPR at 8 years was 5.3% and for 2,567 sTSA procedures was 4.0%. There was no difference in the risk of revision between study groups (p=0.128). There was an increased risk of revision for aTSA and sTSA undertaken with humeral head sizes <44mm (p=0.006 and p=0.002 respectively). Low mean surgeon volume (MSV) (<10 cases per annum) was a revision risk for aTSA (p=0.033) but not sTSA (p=0.926). For primary diagnosis osteoarthritis since 2017, low MSV was associated with an increased revision risk for aTSA vs sTSA in the first year (p=0.048). Conversely, low MSV was associated with a decreased revision risk for sTSA in the first 6 months (p<0.001). Predominantly aTSA was revised for loosening (28.8%) and sTSA for instability/dislocation (40.6%). Revision risk of aTSA and sTSA was associated with humeral head size and mean surgeon volume but not patient characteristics. Inexperienced shoulder arthroplasty surgeons experience lower early revision rates with sTSA in the setting of osteoarthritis. Revision of aTSA and sTSA occurred for differing reasons


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 82 - 82
1 May 2019
Lewallen D
Full Access

Total knee replacement (TKA) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKA have changed, with ever younger, more active and heavier patients receiving TKA. This broadening of indications coincided with the widespread adoption of modular cemented and cementless TKA systems in the 1980's, and soon thereafter wear debris related osteolysis and associated prosthetic loosening became major modes of failure for TKA implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of some of these implant designs have demonstrated excellent durability in survivorship studies out to twenty years. While aseptic loosening of these all polyethylene tibial components was a leading cause of failure in these implants, major polyethylene wear-related osteolysis around well-fixed implants was rarely (if ever) observed. Cemented metal-backed nonmodular tibial components were first introduced to allow for improved tibial load distribution and protection of the underlying (often osteoporotic) bone. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and also aided the addition of stems and wedges. Modular vs. All Polyethylene Tibial Components in Primary TKA: Kremers et al. reviewed 10,601 adult (>18 years) patients with 14,524 condylar type primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005 and examined factors effecting outcome. The mean age was 68.7 years and 55% were female. Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all polyethylene tibias (HR 0.3, 95% CI: 0.2, 0.5). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008). In a more recent review from our institution of over 11, 600 primary TKA procedures, Houdek et al. again showed that all polyethylene tibial components had superior survivorship vs. metal backed designs, with a lower risk of revision for loosening, osteolysis or component fracture. Furthermore, results for all polyethylene designs were better for all BMI subgroups except for those <25 BMI where there was no difference. All polyethylene results were also better for all age groups except for those under age <55 where there again was no difference. Finally, in a recently published meta-analysis of 28 articles containing data on 95,847 primary TKA procedures, all polyethylene tibial components were associated with a lower risk of revision and adverse outcomes. The available current data support the use of all polyethylene tibial designs in TKA in all patients regardless of age and BMI. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the better survivorship and lower risk of revision than seen with modular metal backed tibial components


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 61 - 61
1 May 2019
Garbuz D
Full Access

Two stage exchange has been the gold standard in North America for the treatment of infected knee replacements. The choice of static vs. articulated spacers has been debated for a number of years. At our institution our choice of spacer for 2 stage exchanges is an articulated spacer. This allows motion between stages which facilitates recovery, and makes the second stage technically easier. In a study from our institution we followed 115 infected TKAs treated with the PROSTALAC articulated spacer for 5–9 years. Success for eradication of infection was 88%. With a repeat 2 stage, overall infection control was 98%. In addition, we compared functional outcomes to a group of aseptic knee revisions and found no difference in functional outcomes with standard quality of life outcome scores. While the articulated spacer was our treatment of choice in 2 stage exchange around 2012, the company that manufactured the PROSTALAC knee components ceased to manufacture them. At that time, based on the work of 2 previous studies (Hofmann, Lee), we continued to use articulated spacers. However, this was now the so-called Hofmann technique with a new standard femoral component with an all polyethylene tibia. The only difference from a standard knee revision was no stems and the utilization of high dose antibiotics. We also followed the principles from Europe of one stage exchange, such as wide debridement and soaking in dilute betadine for 15 minutes. More recently as of Sept 2015 we have used an all polyethylene tibia with a keel. The hope being that this will give a more stable tibia than previous and perhaps make a second stage unnecessary. Our first case was September 2015. The intention was not to do a second stage if the infection was eradicated and the patient had good pain relief and function. To date we have implanted 28 of these and in 80% of cases we have not had to do a second stage revision. Further study will reveal where this inadvertent one stage fits in our practi


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 13 - 13
1 Aug 2020
Atrey A Wu J Waddell JP Schemitsch EH Khoshbin A Ward S Bogoch ER
Full Access

The purpose of this investigation is to assess the rate of wear the effect once the “bedding in period”/ poly creep had been eliminated. Creep is the visco-elastic deformation that polyethylene exhibits in the first 6–12 weeks. We also assessed the wear pattern of four different bearing couples in total hip arthroplasty (THA): cobalt-chrome (CoCr) versus oxidized zirconium (OxZir) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) versus highly-crosslinked polyethylene (XLPE) acetabular liners. This was a randomized control study involving 92 patients undergoing THA. They were randomized to one of four bearing couples: (1) CoCr/UHMWPE (n= 23), (2) OxZir/UHMWPE (n=21), (3) CoCr/XLPE (n=24), (4) OxZir/XLPE (n=24). Patients underwent a posterior approach from one of three surgeons involved in the study. All patients received a porous-coated cementless acetabular shell and a cylindrical proximally coated stem with 28 mm femoral heads. Each patient was reviewed clinically and radiographically at six weeks, three and 12 months, two, five and 10 years after surgery. Standardized anteroposterior and lateral radiographs were taken. All polyethylene wear was measured by an independent blinded reviewer. Linear and volumetric wear rates were measured on radiographs using a validated computer software (Polyware Rev. 5). Creep was defined as the wear at 6 or 12 weeks, depending on if there was a more than 10% difference between both measurements. If a greater than 10% difference occurred than the later period's wear would be defined as creep. 72 hips were included in analysis after exclusion of seven revisions, three deaths and 10 losses to follow-up. The annual linear wear rates (in mm/y) at 10 years were (1) 0.249, (2) 0.250, (3) 0.074 and (4) 0.050. After adjusting for creep these rates become were (1) 0.181, (2) 0.142, (3) 0.040 and (4) 0.023. There is statistical differences between raw and adjusted linear wear rates for all bearing couples. The percentage of the radiographically measured wear at 10 years due to creep is (1) 30% (2) 44%, (3) 58.5% and (4) 51.5% with significant differences in couples with XLPE versus those with UHMWPE. There was no significant correlation between age, gender, cup size, tilt, planar anteversion and the linear or volumetric wear rates. The linear wear rate of both UHMWPE and XLPE are even lower thxdsxzan previously described when creep is factored out. XLPE has again demonstrated far superior linear wear rates at 10 years than UHMWPE. There were no significant differences in wear rate at 10 years between CoCr and OxZir, this may be due to an underpowered study. XLPE exhibits proportionally more creep than UHMWPE within the first 6–12 weeks and accounts for more of the total wear at 10 years as measured radiographically at the end period


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 11 - 11
1 May 2019
Seitz W
Full Access

In an effort to address the relatively high rate of glenoid component lucent lines, loosening and failure, tantalum/trabecular metal glenoid implant fixation has evolved as it has in hip and knee arthroplasty. Trabecular metal-anchored glenoid implants used in a consecutive patient case series have demonstrated a lower failure rate than traditional all polyethylene cemented glenoids. Although the radiographs of some patients demonstrated small focal areas of lucency, none have become loose, and only two have actually demonstrated glenoid component failure due to a fracture 6 years after the index procedure. One with glenoid loosening was due to polyethylene wear from a massive cuff tear occurring 8 years after the index procedure. Most patients experienced significant improvements in shoulder range of motion and reduction in pain. Trabecular metal-anchored glenoids when carefully implanted do not produce excessive failure rates, but rather result in functional improvements while decreasing operative time


Introduction. We have investigated middle-term clinical results of total hip arthroplasty (THA) cemented socket with improved technique using hydroxyapatite (HA) granules. IBBC (interfacial bioactive bone cement method, Oonishi) (1) is an excellent technique for augmenting cement-bone fixation in the long term. However, the technique is difficult and there are concerns over some points, such as bleeding control, disturbance of cement intrusion to anchoring holes by granules, difficulty of the uniform granular dispersion to the acetabular bone. To improve the original technique, we have modified IBBC (M-IBBC), and investigated the middle-term clinical results and radiographic changes. Materials and Methods. K-MAX HS-3 THA (Kyocera, Japan), with tapered cemented stem with small collar and all polyethylene cemented socket, was used for THA implants (Fig.1). Basically the third generation cementing technique was used for THA using bone cement. The socket fixation was performed with bone cement (Endurance, DePuy) and HA granules (Ca10(PO4)6(OH)2, Boneceram P; G-2, 0.3–0.6mm in size, Olympus, Japan) (Fig.2). In original IBBC technique, HA granules were dispersed on reamed acetabulum before cementing. In M-IBBC technique, HA granules were attached to bone cement on plastic plate, then inserted to reamed acetabulum and pressurized (Fig.3). 112 hip joints (95 cases) were operated between June 2010 and March 2014, and followed. The average follow-up period was 6.5 years, and average age at operation was 66.5 years. The clinical results were evaluated by Japan Orthopaedic Association Hip Score (JOA score), and X-p findings were evaluated using antero-posterior radiographs. The locations of radiolucent lines were identified according to the zones described by Delee and Charnley for acetabular components, and Zone 1 was divided into two parts, outer Zone 1a and inner Zone 1b. Results and Discussion. Revision was not performed. JOA score improved from 47 to 88. Socket and stem loosening was not observed. X-p findings of sockets demonstrated radiolucent line in Zone 1a/1b/2/3 in 0.9/0/0/0% immediately after the operation, 6.3/1.8/0/0.9% at 2 years postoperatively. After 2 years there was no progressive change, however, improvement of radiolucent line in Zone 1a was observed in two cases after 3 years postoperatively. Accordingly, at 5 years radiolucent line in Zone 1a/1b was observed in 4.4/1.8%. Oonish has reported excellent clinical results of THA with IBBC (1). To easily perform IBBC, we have modified the technique, improving the problems of IBBC. In this study, radiolucent line was observed at the margin of the socket in a small number of cases, and there was no progressive change. In addition, improvement of radiolucent line was observed in M-IBBC in this study, which was not observed in conventional cementing technique. Conclusions. It is demonstrated that M-IBBC provides stable socket cement fixation for THA. The interesting finding in M-IBBC cases was the improvement of radiolucent line, suggesting osteoconductive property of hydroxyapatite granules at the interface after the operations. The promising long-term clinical results of M-IBBC method, were expected. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 83 - 83
1 May 2019
Hofmann A
Full Access

Two big problems exist with the all polyethylene cemented tibial component; the polyethylene and the cement. The polyethylene is too weak and flexible to bear high tibial load, so it deforms and loosens. The interface stresses are too high when two flexible structures are poorly bonded and heavily loaded. Modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80's for versatility and to facilitate screw fixation for cementless implants. These designs allow exchange of various polyethylene thicknesses, and aids the addition of stems and wedges. Other advantages include the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. Several studies have documented the high failure rate of isolated polyethylene exchange procedures, because technical problems related to the original components are left uncorrected. However, revision for wear is the simplest revision ever!. Since the late 1980's the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear. There is some association with the widespread use of both cementless and cemented modular tibial designs. Improved polyethylene attachment is the answer even if a screw, a wire, or a pin is needed. Do not abandon the modular tibia


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 96 - 96
1 Feb 2015
Lewallen D
Full Access

Total knee replacement is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria have changed, with ever younger, more active and heavier patients receiving TKA. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKA implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Polyethylene wear with osteolysis around well fixed implants was rarely (if ever) observed. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and also aided the addition of stems and wedges. Since the late 1980's, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs. Mayo Data: Modular versus All Polyethylene Tibial Components in Primary TKA. The study population included 10,601 adult (>18 years) patients with 14,524 primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs using Cox proportional hazards regression models adjusting for age, sex, calendar year and body mass index (BMI). Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining (CR) designs performed better than the posterior-stabilised (PS) designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008). Summary: Available data support the use of nonmodular tibial designs in TKA in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the best survivorship and lowest risk of revision


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 74 - 74
1 May 2014
Lewallen D
Full Access

Total knee replacement is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKA have changed, with ever younger, more active and heavier patients receiving TKA. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Polyethylene wear with osteolysis around well fixed implants was rarely (if ever) observed. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and to also aided the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. However several studies have documented the high failure rate of isolated polyethylene exchange procedures, probably because technical problems related to the original components are left uncorrected. Since the late 1980's, the phenomena of polyethylene wear and osteolysis has been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs. Mayo Data: Modular versus All Polyethylene Tibial Components in Primary TKA. The study population included 10,601 adult (>18 years) patients with 14,524 primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs using Cox proportional hazards regression models adjusting for age, sex, calendar year and body mass index (BMI). Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining (CR) designs performed better than the posterior-stabilised (PS) designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008). Available data support the use of nonmodular tibial designs in TKA in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In most patients, but particularly in older patients use of an all polyethylene tibial component is not only more cost effective, but is associated with the best survivorship and lowest risk of revision


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2016
Lewallen D
Full Access

Total knee replacement (TKR) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKR have changed, with ever younger, more active and heavier patients receiving TKR. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKR implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and to also aid the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. However, several studies have documented the high failure rate of isolated polyethylene exchange procedures, probably because technical problems related to the original components are left uncorrected. Since the late 1980s, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs. Mayo Data. The study population included 10,601 adult patients with 14,524 primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs. Over an average 9 year follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining designs performed better than the posterior-stabilised designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, and osteolysis. Among patient characteristics, male gender, younger age, and higher BMI were all significantly associated with higher risk of revisions (p<0.008). Summary. Available data support the use of nonmodular tibial designs in TKA in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the best survivorship and lowest risk of revision


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 4 - 4
1 Apr 2019
Tamura J Asada Y Oota M Matsuda Y
Full Access

Introduction. We have investigated the long-term (minimum follow-up period; 10 years) clinical results of the total hip arthroplasty (THA) using K-MAX HS-3 tapered stem. Materials and Methods. In K-MAX HS-3 THA (Kyocera Medical, Kyoto, Japan), cemented titanium alloy stem and all polyethylene cemented socket are used. This stem has the double tapered symmetrical stem design, allowing the rotational stability and uniform stress distribution. The features of this stem are; 1. Vanadium-free high-strength titanium alloy (Ti-15Mo-5Zr-3Al), 2. Double-tapered design, 3. Smooth surface (Ra 0.4µm), 4. Broad proximal profile, 5. Small collar. Previous type stem, which was made of the same smooth-surface titanium alloy, has the design with cylindrical stem tip, allowing the maximum filling of the femoral canal. Osteolysis at the distal end of the stem had been reported in a few cases in previous type with cylindrical stem tip, probably due to the local stress concentration. Therefore the tapered stem was designed, expecting better clinical results. 157 THAs using HS-3 taper type stem were performed at Kitano Hospital between March 2004 and March 2008. And 101 THAs, followed for more than 10 years, were investigated (follow-up rate; 64.3%). The average age of the patients followed at the operation was 61.7 years and the average follow-up period was 10.9 years. The all-polyethylene socket was fixed by bone cement, and the femoral head material was CoCr (22mm; 5 hips, 26 mm; 96 hips). Results. Two hips were revised, one was due to late infection, and the other due to breakage of the implant in trauma. Japanese orthopaedic association (JOA) score improved from 40 to 86 points. Postoperative complication was three periprosthetic fractures (one femoral shaft fracture and two greater trochanteric fractures) and femoral shaft fracture case was operated. Dislocation was not observed. Socket loosening (Hodgkinson, Type 3, 4) and stem loosening (Harris, definite and probable) were not observed radiographically. Cortical hypertrophy was observed in 7.9%. The survival rate of HS-3 tapered stem was 98% for revision due to any reason and 100% for revision due to aseptic loosening. Discussion. The long-term clinical results of K-MAX HS-3 tapered stem were excellent. The osteolysis at the stem tip was not observed in this type, which was observed in a few cases in previous type. From the X-ray finding, it was suggested that this taperd stem had more uniform stress distribution to the femoral bone than previous type. Moreover, the problems associated with titanium alloy usage were not observed. From the present investigation, good farther long-term results of the tapered titanium stem were expected


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 53 - 53
1 Nov 2015
Lewallen D
Full Access

Total knee replacement (TKR) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKR have changed, with ever younger, more active and heavier patients receiving TKR. Initially, tibial components were cemented all-polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to 20 years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Polyethylene wear with osteolysis around well-fixed implants was rarely (if ever) observed. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intra-operative versatility by allowing interchange of various polyethylene thicknesses, and also aided the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges. Since the late 1980's, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs. Mayo Data: Modular versus All Polyethylene Tibial Components in Primary TKA: The study population included 10,601 adult (>18 years) patients with 14,524 primary TKR procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs using Cox proportional hazards regression models adjusting for age, sex, calendar year and body mass index (BMI). Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining (CR) designs performed better than the posterior-stabilised (PS) designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, and osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008). Available data support the use of nonmodular tibial designs in TKR in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the best survivorship and lowest risk of revision


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 31 - 31
1 Aug 2017
Berend K
Full Access

Over the past fifteen years, the average length of stay for total hip (THA) and total knee arthroplasty (TKA) has gradually decreased from several days to overnight. The most logical and safest next step is outpatient arthroplasty. Through the era of so-called minimally invasive surgery, perhaps the most intriguing advancements are not related to the surgery itself, but instead the areas of rapid recovery techniques and peri-operative protocols. Rapid recovery techniques and peri-operative protocols have been refined to allow for same-day discharge with improved outcomes. In addition to Rapid Recovery techniques for the clinical care of the outpatient, one critical component to same-day total knee arthroplasty is the efficient performance and simplicity of the procedure itself. Simplified instrumentation and elimination of modularity can provide that efficiency and simplicity. All polyethylene tibial components have been mostly supplanted by modular metal-backed designs in recent years. However, mounting evidence suggests that survivorship of TKA with an all-poly tibia is superior to TKA with metal-backed, modular designs in all age groups except younger than 55, in which survival is equal to a modular design. Furthermore, this survival advantage was unaffected by obesity. Combining these excellent clinical results with the efficiency of a non-modular component can add to the efficiency and simplicity of the surgical technique. Therefore, in outpatient total knee arthroplasty, the all-poly tibia truly represents the less is more mentality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 40 - 40
1 Aug 2017
Pagnano M
Full Access

Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the survival and outcomes of all-polyethylene tibial components. Methods. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970–2013). There were 28,224 (88%) metal-backed and 3,715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to sex distribution (57% female for both) mean age (67 vs. 71 years), and mean BMI (31.6 vs. 31.1). Mean follow-up was 7 years (maximum 40 years). Results. The purpose of this investigation was to analyze the outcomes of all-polyethylene compared to metal-backed components in TKA and to determine (1) is there a difference in overall survival? All polyethylene tibial components had improved survivorship (P<0.0001) and metal-backed tibias were at increased risk of revision (HR 3.41, P<0.0001). (2) Does body mass index (BMI) or age have an effect on survival of all-polyethylene compared to metal-backed tibial components? All-polyethylene tibias had improved survival (P<0.01) in all ages groups except in patients 85 years or greater, where there was no difference (P=0.16). All-polyethylene tibial components had improved survival (P<0.005) for all BMI's except in the morbidly obese (BMI ≥40) where there was no difference (P=0.20). (3) Is there an increased risk of post-operative infection? Metal-backed tibial components were found to have an increased risk of infection (HR 1.60, P=0.003). (4) Is there a difference in the rate of reoperation and post-operative complications? Metal-backed tibial components were found to have an increased risk of reoperation (HR 1.84, P<0.0001). Conclusions. The use of all-polyethylene tibias should be considered for the majority of patients, regardless of age and BMI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 93 - 93
1 Apr 2017
Garbuz D
Full Access

Two stage exchange has been the gold standard in north America for the treatment of infected knee replacements. The choice of static versus articulated spacers has been debated for a number of years. At our institution our choice of spacer for 2 stage exchanges is an articulated spacer. This allows motion between stages which facilitates recovery, and makes the second stage technically easier. In a study from our institution we followed 115 infected TKAs treated with the PROSTALAC articulated spacer for 5–9 years. Success for eradication of infection was 88%. With a repeat two stage overall infection control was 98%. In addition we compared functional outcomes to a group of aseptic knee revisions and found no difference in functional outcomes with standard quality of life outcome scores. While the articulated spacers was our treatment of choice in 2 stage exchange around 2012 the company that manufactured the PROSTALAC knee components ceased to manufacture them. At that time based on the work of 2 previous studies (Hofmann, Lee), at our institution we continued to use articulated spacers. However, this was now the so called Hofmann technique with a new standard femoral component with an all polyethylene tibia. The only difference from a standard knee revision was no stems and the utilization of high dose antibiotics. We also followed the principles from Europe of one stage exchange, such as wide debridement and soaking in dilute betadine for 15 minutes. More recently as of Sept 2015 we have used an all-polyethylene tibia with a keel. The hope being that this will give a more stable tibia than previous and perhaps make a second stage unnecessary. Our first case was September 2015. The intention was not to do a second stage if the infection was eradicated and the patient had good pain relief and function. To date we have implanted 12 of these and in all cases we have not had to do a second stage revision. Further study will reveal where this inadvertent one stage fits in our practice


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2016
Della Valle AG
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3B) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2006 and 2014, sixteen patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all polyethylene cup was used. Preoperative diagnosis was aseptic loosening (10 cemented and 6 non-cemented). The femoral component was revised in 9 patients. Postoperative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete postoperative sciatic palsy. After a mean follow up of 40 months (24 to 104) none of the patients required re-revision. One asymptomatic patient presented with aseptic loosening 9 years postoperatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions for large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant make this technique an attractive option for these large defects. Longer follow-up is needed to assess survivability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 43 - 43
1 Mar 2017
Tamura J Asada Y Ota M Matsuda Y
Full Access

Introduction. We have compared the middle-term (average follow-up period; 10 years) clinical results of the K-MAX HS-3 tapered stem with those of the previous type having cylindrical tip. Materials and Methods. In K-MAX HS-3 THA (Kyocera Medical, Kyoto, Japan), cemented titanium alloy stem and all polyethylene cemented socket are used. This stem has the double tapered symmetrical stem design, allowing the rotational stability and uniform stress distribution (Type T) (Fig. 1). The features of this stem are; 1. Vanadium-free high-strength titanium alloy (Ti-15Mo-5Zr-3Al), 2. Double-tapered design, 3. Smooth surface (Ra 0.4μm), 4. Broad proximal profile, 5. Small collar. In contrast, previous type stem, which was made of the same smooth-surface titanium alloy, has the design with cylindrical stem tip, allowing the maximum filling of the femoral canal (Type C) (Fig. 2). Osteolysis at the distal end of the stem had been reported in a few cases in Type C, probably due to the local stress concentration. Therefore the tapered stem was designed, expecting better clinical results. All surgery was performed at Kitano Hospital between September 2003 and June 2006. 72 THA were performed (Type T; 52 hips, Type C; 20 hips). The average age of the patients at the operation was 61 and 69 years and the average follow-up period was 10.1 and 10.4 years for the Type T and C, respectively. The all-polyethylene socket was fixed by bone cement, and the femoral head material was alumina or CoCr (22 or 26 mm). Results. One hip was revised in Type C. Japanese orthopaedic association (JOA) score improved from 39/37 to 84/77 points (Type T/C). Postoperative complication was dislocation in one case (Type C; 1). Socket loosening was not observed radiographically. Stem loosening was observed in one hip in Type C, demonstrating osteolysis at the distal end of the stem. In this case, revision THA was performed 3.5 years postoperatively. Bone resorption was more frequently observed in Type C than Type T. Cortical hypertrophy was observed in 7.7% in Type T and 25% in Type C. Discussion. The middle-term clinical results of K-MAX HS-3 taper stem (Type T) was excellent. The osteolysis at the stem tip was not observed in this type, which was observed in a few cases in previous Type C. From the X-ray finding, it was suggested that Type T had more uniform stress distribution to the femoral bone than Type C. Moreover, the problems associated with titanium alloy usage were not observed. From the present investigation, good long-term results of the tapered titanium stem (Type T) was expected. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 2 - 2
1 May 2016
Affatato S Jaber S Paola T
Full Access

Introduction. Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient's activity level [1]. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) How does implant size affect wear response of total knee replacement (TKR)?. Materials & Methods. Two sets of the same total knee prosthesis (TKP), different in size (#2 and #6), equal in design, were tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform [2], replicating a stair-climbing movement. The results were compared with two sets of TKP previously tested with the ISO level walking task. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out and digital microscopy was used to characterize the superficial structure of all the TKPs and explanted components. Results. The average volumetric loss of the UHMWPE inserts tested for 2Mc under ISO standard level walking were 21.36 ±1 mm3 and 41 ±2 mm3 for the size #2 and size #6, respectively. The average volumetric mass loss after two million cycles for the size #2 under the stair climbing simulation was 44 ±6 mm3. Microscope examinations showed some deep scratches along the flexion/extension movements for all the components. A decrease in crystallinity, induced by mechanical stress was observed on all polyethylene components and was quantitatively confirmed by the orthorhombic fraction αo value. Conclusion. These preliminary results showed that under more severe conditions for size #2, the material properties change according to a different wear mechanism and a decrease in crystallinity occurs. Under the ISO 14243-2 load profile, an increase in crystallinity was observed; whereas under the more demanding conditions, a decrease in crystallinity occurs. Analyses on the size #6 component are in progress


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 72 - 72
1 May 2016
Tamura J Asada Y Nishida H Ota M Izeki M Yoshida S Hira Y Orita K Matsuda Y
Full Access

Introduction. IBBC (interfacial bioactive bone cement method, Oonishi) (1) is an excellent technique for augmenting cement-bone fixation in the long term. However, the technique is difficult and there are concerns over some points, such as bleeding control, disturbance of cement intrusion to anchoring holes by granules, difficulty of the uniform granular dispersion to the acetabular bone (Zone 1 in particular). To improve this technique, we have modified IBBC (M-IBBC), and investigated the short-term clinical results and radiographic changes. Materials and Methods. K-MAX HS-3 THA (Kyocera Medical, Japan), with cemented stem and all polyethylene cemented socket, was used for THA implants. Basically the third generation cementing technique was used for THA using bone cement. The socket fixation was performed with bone cement (Endurance, DePuy) and hydroxyapatite (HA) granules (Ca10(PO4)6(OH)2, Boneceram P; G-2, Olympus, Japan). In original IBBC technique, HA granules were dispersed on reamed acetabulum before cementing. In M-IBBC technique, HA granules were attached to bone cement on plastic plate, then inserted to reamed acetabulum and pressurized. HA granules (G-2) are 0.3–0.6mm in size, with 35–38% porosity and sintered at 1150â��. 51 hip joints (49 cases) were operated between June 2010 and December 2011, and followed. The average follow-up was 3.9 years, and average age at operation was 66.5 years. The clinical results were evaluated by Japan Orthopaedic Association Hip Score (JOA score), and X-p findings were evaluated using antero-posterior radiographs. The locations of radiolucent lines were identified according to the zones described by Delee and Charnley for acetabular components, and Zone 1 was divided into two parts, outer Zone 1a and inner Zone 1b. Results and Discussion. Revision was not performed. Japanese orthopaedic association (JOA) score improved from 48 to 87. Socket and stem loosening was not observed. X-p findings of sockets demonstrated radiolucent line in Zone 1a/1b/2/3 in 2/0/0/0% immediately after the operation, 9.8/2/0/2% at 1 year postoperatively. After 1 year there was no progressive change, however, improvement of radiolucent line in Zone 1a was observed in two cases after 3 years postoperatively. Accordingly, after 3 years radiolucent line in Zone 1a/1b was observed in 5.9/2%. Oonish has reported excellent clinical results of THA with IBBC (1). To easily perform IBBC, we have modified the technique, improving the problems of IBBC. In our previous report, we reported improvement of radiolucent line in IBBC (2). In this report, the similar radiographic behavior was observed in M-IBBC, which was not observed in conventional cementing technique. This finding suggests osteoconductive property of hydroxyapatite granules at the interface after the operations. Conclusions. The interesting finding in M-IBBC cases was the improvement of radiolucent line, which was observed in IBBC cases. The promising long-term clinical results of M-IBBC method, similar to IBBC cases, were expected