Advertisement for orthosearch.org.uk
Results 1 - 50 of 885
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 155 - 155
1 May 2016
Zumbrunn T Malchau H Rubash H Muratoglu O Varadarajan K
Full Access

INTRODUCTION. In native knees the anterior cruciate ligament (ACL) plays a major role in joint stability and kinematics. Sacrificing the ACL in contemporary total knee arthroplasty (TKA) is known to cause abnormal knee motion, and reduced function. Hence, there is growing interest in the development of ACL retaining TKA implants. Accommodation of ACL insertion around the tibial eminence is a challenge with these designs. Therefore, a reproducible and practical test setup is necessary to characterize the strength of the ACL/bone construct in ACL retaining implants. Seminal work showed importance of loading the ACL along its anatomical orientation. However, prior setups designed for this purpose are complex and difficult to incorporate into a standardized test for wide adoption. The goal of this study was to develop a standardized and anatomically relevant test setup for repeatable strength assessment of ACL construct using basic force-displacement testing equipment. METHODS. Cadaver knees were positioned with the ACL oriented along the loading axis and being the only connection between femur and tibia. 15° knee flexion was selected based on highest ACL tensions reported in literature. Therefore, the fixtures were adjusted accordingly to retain 15° knee flexion when the ACL was tensioned. The test protocol included 10 cycles of preconditioning between 6N and 60N at 1mm/s, followed by continuous distraction at 1mm/s until failure (Fig. 1). Eleven cadaveric knees (4 male, 7 female; 70.9 yrs +/−13.9 yrs) were tested using this setup to characterize a baseline ACL pullout strength (peak load to failure) in native knees. RESULTS. The average ACL pullout strength was 935.6N +/−327.5N with the extremes ranging from a minimum of 346N to a maximum of 1425N. There were five failure modes observed: [1] ACL avulsion from the femur with bony attachment (one knee), [2] ACL pull-off from the femur w/o bony attachment (two knees), [3] ACL tear (three knees), [4] ACL pull-off from the tibia w/o bony attachment (one knee), [5] ACL avulsion from the tibia with bony attachment (three knees). One knee showed a combined failure mode of 2 & 4, meaning part of the ACL was pulled off the femur and part pulled off the tibia. CONCLUSION. There was a large variation in failure load between specimens. The knee with the minimum failure load had severe arthritis, osteophytes and signs of ACL deficiency. The average failure load (935.6N +/−327.5N) is in line with those published in literature for a comparable age group. This indicates that failure loads and modes obtained with more complex setups could be reproduced by using standard uniaxial load frames and simple fixtures. The failure modes in our experiment were evenly spread between mid-substance, and insertions (either femur or tibia). This test could be used as a standardized method to investigate the strength of the ACL complex following procedures such as ACL reconstruction, partial- and total knee arthroplasty. In particular, this setup provides a reliable mechanism for evaluation of the ACL-bone construct in bi-cruciate retaining (BCR) TKA, which is likely required for regulatory pathways


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 136 - 136
1 Dec 2015
Costa A Saraiva D Sarmento A Carvalho P Lebre F Freitas R Canela P Dias A Torres T Santos F Pereira R Frias M Oliveira M
Full Access

Knee joint infection after an ACL reconstruction procedure is infrequently but might be a devastating clinical problem, if not diagnosed promptly and treated wisely. The results of functional outcomes in these patients are not well known because there aren't large patient series in the literature. The objective of this study was to evaluate the prevalence and determine the adequate management of septic arthritis following ACL reconstruction and to assess the patient functional outcomes. The authors conducted a retrospective multicentric analysis of septic arthritis cases occurring after arthroscopically assisted ACL reconstructions (hamstrings and BTB), in patients submitted to surgery between 2010 to 2014. The study reviewed patients submitted do ACL reconstruction, that presented objective clinical suspicion of joint infection, in post-operative acute and sub-acute phases, associated with high inflammatory seric parameters (CRP >=10,0, ESR>=30,0) and synovial effusion laboratory parameters highly suggestive (PMN >=80, leucocytes >=3000). All this patients were treated with antibiotic empiric suppressive therapy and then directed antibiotherapy according to antibiotic sensitivity profile, then the patients were submitted to arthroscopic lavage procedure, without arthropump, but with debris and fibrotic tissue removal preserving always the ACL plasty. The functional outcomes analyzed were the Lysholm and the IKDC score. Eleven (2.2 %) out of 490 patients analyzed in the sudy were diagnosed with a post-operative septic arthritis. The microbiologic exams showed coagulase-negative Staphylococcus was present in 5 patients (S. lugdunensis in 4 cases and S. capitis in 1 case), Staphylococcus Aureus in 2 patients (1 MSSA and 1 MRSA). In four patients, the micro-organism was not identified. The studied patients had a mean follow-up of 28 ± 16 months, the Lysholm score was 74.8 ± 12.2, the IKDC score was 66.4 ± 20.5. Functional outcomes in the control group were better than those obtained in the infected group. (Lysholm score 88.2 ± 9.4 (NS); IKDC score 86.6 ± 6.8 (NS). All patients retained their reconstructed ACL. None of the patients relapsed or need other intervention because of ACL failure and chronic instability. The prevalence of septic arthritis after an ACL reconstruction in this series was 2.2 %, slightly higher than other international series (0.14 to 1.7 %). Arthroscopic lavages along with antibiotic treatment showed to be a secure procedure and allowed the preservation of the ACL plasties, without infection relapse. But the functional outcomes after active intra-articular infection were largely inferior to those obtained in patients without infection, probably to uncontrolled and intense inflammatory local response


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 87 - 87
1 Mar 2005
Calmet J Mellado JM Forcada IG Giné J
Full Access

Introduction and purpose: To assess the diagnostic usefulness of MRI to diagnose ACL lesions using quantitative instead of qualitative parameters. Materials and methods: A retrospective study was made of the MRIs of a group of 50 patients with an athroscopically confirmed ACL tear and a control group of 50 patients with meniscal lesions and with an arthroscopic confirmation that they had a normal ACL. Multiple MRI findings were studied in order to evaluate their sensitivity and Specificity to detect an ACL lesion. Special emphasis was placed on 3 quantitative parameters, including a simplified method to measure the angle between the ACL and the tibial plateau. Results: Using 45° as a cutoff value, the ACL/tibial plateau angle yielded a sensitivity and Specificity of 100%. With a 0° cutoff value, the angle together with Blumensaat’s line showed a sensitivity of 90% and a Specificity of 98%. With a cutoff value of 115°, the PCL angle showed a sensitivity of 70% and a Specificity of 82%. Conclusions: The quantitative parameters studied are valuable to predict ACL lesions and can increase both the sensitivity and Specificity of MRI images. The ACL/ tibial plateau angle can be measured easily using a single MRI image and can be regarded as the best clue to diagnose ACL lesions


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 189 - 189
1 Mar 2010
Hohmann E Tay M Tetsworth K Bryant A Tay M
Full Access

Anterior cruciate ligament reconstruction has become a standard procedure with a documented good and excellent outcome of 70–90%. It has been demonstrated by previous research that all patients following surgery demonstrate a strength deficit of almost 20%. However it is not known whether these strength deficits have an influence on postoperative functionality. 52 consecutive patients (38 males and 14 females) were selected (mean age 27.9 years). All subjects were tested prior and 12 month following anterior cruciate ligament reconstruction. Muscle strength was assessed using a Biodex dynamometer. Isometric strength was examined at 30 and 60 degrees of flexion. Isokinetic testing was performed at 180 degrees/sec and peak torque and symmetry indices were analysed. No correlations were found between the Cinncinnati Score and isokinetic peak torque for extension. A moderate significant (p=0.001–0.007) correlation (r=0.200.45) was found for peak flexion torque in ACL reconstructed patients. In ACL deficient patients symmetry indices (r=0.36–0.43, p=0.001–0.004) were moderately related to functionality for both flexion and extension. Quadriceps muscle strength does not seem to be an important predictor of knee function after ACL reconstruction. Flexors seem to be important to protect the graft from overload. In ACLD knees functionality is related to high symmetry indices suggesting similar strength is necessary to perceive knee function as near normal. This is possibly a normal neuromuscular adaptation caused by contralateral quadriceps avoidance


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 114 - 114
1 Feb 2012
Hohmann E Bryant A Newton R Steele J
Full Access

The level of hamstring antagonist activation is thought to be related to knee functionality following anterior cruciate ligament (ACL) injury/surgery as pronounced co-activation can control anterior tibial translation (ATT). The purpose of this study was to examine relationships between knee functionality and hamstring antagonist activation during isokinetic knee extension in ACL deficient (ACLD) and ACL reconstructed (ACLR) patients. Knee functionality was rated using the Cincinnati Knee Rating System for the involved limb of 10 chronic, functional ACLD patients and 27 ACLR patients (14 using a patella tendon (PT) graft and 13 using a semitendinosus/gracilis tendon (STGT) graft). Each subject also performed maximal effort isokinetic knee extension and flexion at 180°. s. -1. for the involved limb with electromyographic (EMG) electrodes attached to the semitendinosus (ST) and biceps femoris (BF) muscles. Antagonist activity of the ST and BF muscles was calculated in 10° intervals between 80-10° knee flexion. For the ACLD group, Pearson product moment correlations revealed significant (p<0.05) moderate, positive relationships between knee functionality and ST and BF antagonist activity across the majority of the knee flexion intervals. For both ACLR groups, several significant (p<0.05) moderate, negative associations were found between ST and BF antagonist activity and knee functionality. Amplified hamstring antagonist activity in ACLD patients at flexion angles representative of those at footstrike and deceleration improves knee functionality as increased crossbridge formation increases hamstring stiffness and decreases ATT. Lower-level hamstring activation is sufficient to unload the ACL graft and improve knee functionality in ACLR patients


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 317 - 317
1 May 2006
Clatworthy M Harper T Maddison R
Full Access

The purpose of this study was initially to examine the effect of tibial slope on anterior tibial translation in the ACL deficient knee measured objectively using the KT 1000 arthrometer. Patients were then evaluated one year post ACL reconstruction to determine the effect of tibial slope on the outcome of ACL reconstruction. One-hundred patients (male = 70, female 30) aged between 14 and 49 years (Mean = 28.70, SD 8.80) with a diagnosis of isolated anterior cruciate ligament rupture were prospectively recruited. All participants had intact ACLs of the contralateral limb. The following information was recorded for all patients preoperatively and one year post surgery; time from injury to surgery, IKDC objective and subjective assessment and KT 1000 arthrometer readings. Tibial slope was assessed from long tibial lateral x-rays as described by Dejour and Bonnin. Finally, assessment of the menisci occurred intra-operatively. Tibial slope was correlated with KT 1000, meniscal integrity and IKDC assessments. Patients underwent an arthroscopic hamstring ACL reconstruction using Endobutton and Intrafix fixation. All procedures were performed by one surgeon. Pre Reconstruction – Bivariate correlations showed a significant correlation between tibial slope and KT 1000 (r= .29, p < .001). This relation was strengthened when the integrity of the menisci were controlled for (r = .32, p < . 001). When time to surgery was controlled for, correlations between tibial slope and KT 1000 were unaffected. There was also a negative correlation between medial meniscal integrity and time to surgery (r = −.41, p < . 001). No relationships between time to surgery and KT 1000 were evident. Post Reconstruction – Eighty patients were evaluated at a one year post surgery. One patient had a rerupture. The mean KT 1000 difference was 1mm. KT 1000 was > 2mm in 9% and > 5mm in the re rupture only. The mean subjective IKDC score was 89. Using objective IKDC 89% were classified as normal, 10% as nearly normal and 1% as severely abnormal (the rerupture). Bivariate correlations showed no significant correlation between tibial slope and post operative KT 1000 (r= .178, p = .0.115). This study demonstrates a significant relationship between increasing tibial slope and anterior tibial translation of the ACL deficient knee. The relationship did not exist in the post ACL reconstructed knee. However this needs to be investigated further with greater numbers and in the ACL revision group


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 126 - 126
1 Mar 2017
Zumbrunn T Duffy M Rubash H Malchau H Muratoglu O Varadarajan KM
Full Access

One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). Therefore, retaining the ACL is often considered to be the “holy grail” of TKA. However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or non-functional ACL. Therefore, the goal of this research was to investigate whether substitution of ACL function through an anterior post mechanism could improve kinematic deficits of contemporary posterior cruciate ligament (PCL) retaining (CR) implants. This was done using KneeSIM, a previously established dynamic simulation tool based on an Oxford-rig setup. Deep knee bend, chair-sit, stair-ascent and walking were simulated for a contemporary ACL sacrificing (CR) implant, two ACL retaining implants, and an ACL substituting and PCL retaining implant. The motion of the femoral condyles relative to the tibia was recorded for kinematic comparisons. Our results revealed that, like ACL retaining implants, the ACL substituting implant could also provide kinematic improvements over contemporary ACL sacrificing implants by reducing early posterior femoral shift and preventing paradoxical anterior sliding. Such ACL substituting implants may be a valuable addition to the armament of joint surgeons, allowing them to provide improved knee function even when ACL retention is not feasible. Further research is required to investigate this mechanism in vitro and in vivo to verify the results of the simulations, and to determine whether kinematic improvements translate into improved clinical outcomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 94 - 94
1 Jul 2014
Gauthier P Benoit D
Full Access

Summary. This study describes the use of a quasi-static, 6DOF knee loading simulator using cadaveric specimens. Muscle force profiles yield repeatable results. Intra-articular pressure and contact area are dependent on loading condition and ACL integrity. Introduction. Abnormal contact mechanics of the tibiofemoral joint is believed to influence the development and progression of joint derangements. As such, understanding the factors that regulate joint stability may provide insight into the underlying injury mechanisms. Muscle action is believed to be the most important factor since it is the only dynamic regulator of joint stability. Furthermore, abnormal muscle control has been experimentally linked to the development of OA [Herzog, 2007] and in vivo ACL strain [Fleming, 2001]. However, the individual contributions to knee joint contact mechanics remain unclear. Thus, the purpose of this study was to examine the effects of individual muscle contributions on the tibiofemoral contact mechanics using an in-vitro experimental protocol. Methodology. Contact mechanics of 6 fresh frozen cadaver knee specimens were evaluated using the UofO Oxford knee loading device. Various combinations of quadriceps-hamstring co-contraction ratios were applied to the knee while it was “suspended” between the hip and foot components of the device. Loads of six muscle groups were computed using a hill-type musculoskeletal model [Buchanan, 2004]. Simulated ground reaction forces were also applied to the knee to represent force profiles of weight acceptance during gait as it has been shown to produce peak knee joint force in the gait cycle [Shelburne et al., 2006]. For respective medial and lateral joint compartments, the mean contact area (MC-CA and LC-CA), mean contact pressure (MC-CP and LC-CP), peak pressure (MC-PP and LC-PP), and centre of force displacement (MC-COFD and LC-COFD) were determined using a 4011 piezoelectric sensor form Tekscan (Tekscan Inc. Boston, MA). Additionally, the ACL was resected and measurements were repeated. Pearson correlations (r) examined the reliability of measurements as well as the effect an ACL transection on articular loads. Results. Positive correlations were computed for the following: COFD with intact ACL (r=0.99), COFD with resected ACL (r=0.82), MC-COFD pre vs. post ACL- resection (0.91). Furthermore, preliminary results indicated a positive correlation between MC-CA and ACL integrity (r=0.97). Discussion. The repeatability of the measured dependant variables validates the use of the knee-loading device. Interestingly, contact mechanics are more variable post ACL resection for a given muscle loading condition, indicating a decrease in knee joint stability. Also, the COFD is dependent on the different ratios of muscle loads applied to the knee, which demonstrates the importance of muscle action to the modulation of contact forces


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 5 - 5
1 Mar 2006
Lindahl J Hietaranta H
Full Access

Combined anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) disruptions are uncommon orthopaedic injuries. They are usually caused by high- or low-velocity knee dislocations. Because knee dislocations might spontaneously reduce before initial evaluation, the true incidence is unknown. Dislocation involves injury to multiple ligaments of the knee. Both of the cruciate ligaments are usually disrupted, and they are often combined with a third ligamentous disruption (medial collateral ligament or lateral collateral ligament and/or posterior lateral complex). Associated neurovascular, meniscal, and osteochondral injuries are often present and complicate treatment. Classification Knee dislocations are classified by relating the position of the displaced tibia on the femur; anterior, posterior, medial, lateral, or rotational. Both cruciate ligaments might be disrupted in all these injuries. A rotatory knee dislocation occurs around one of the collateral ligaments (LCL) leading to a combined ACL and PCL injury and a tear of the remaining collateral ligament. Knee dislocations that spontaneously reduce are classified according to the direction of instability. Knee dislocations are classified as acute (< 3 weeks) or chronic (> 3 weeks). Initial management The vascular status of the limb must be determined quickly. The knee should be reduced immediately through gentle traction-countertraction with the patient under anesthesia. After reduction, repeat vascular examination. If the limb remains ischemic, emergent surgical exploration and revascularisation is required. If the initial vascular examination is normal, postreduction a formal angiogram should be done especially if the patient has a high velocity injury, is polytraumatized or have altered mental status. Compartment syndrome, open injury, and irreducible dislocation are other indications for emergent surgery. Definitive management Many authors have noted superior results of surgical treatment of bicruciate injuries when compared to nonsurgical treatment. In most cases early ligament surgery (at the second or third week) seems to produce better results compared to late reconstructions. Still the management of knee dislocations remains controversial. Controversies persist regarding surgical timing, technique, graft selection, and rehabilitation. The goal of operative treatment is to retain knee stability, motion, and function. The most common injury patterns include both cruciate ligaments and either medial collateral ligament (MCL) or lateral collateral ligament (LCL) and/or posterolateral structures. Less commonly both collateral ligaments are disrupted. Our policy has been early (from 7 to 21 days) simultaneous reconstruction of both cruciate ligaments and repairing of grade III LCL and posterolateral structures. Most acute grade III MCL tears are successfully treated with brace treatment when ACL and PCL are reconstructed early. Most cruciate ligament injuries are midsubstance tears that need to be reconstructed with autografts or allografts. Repairs can be done in cases of bony avulsion of cruciate ligaments or grade III collateral ligament or capsular injuries. Bone-patellar tendon-bone (BPTB) autograft has mainly used in our clinics to reconstruct the ACL. In some cases BTPB allograft or hamstring tendon autografts has been used. For PCL reconstruction, BPTB allograft (11 mm in diameter) or Achilles tendon allograft has been used. Intrasubstance grade III tears of the LCL can be repaired (in early state) but may need to be augmented with tendon allograft. The LCL and/or the popliteofibular ligament are reconstructed either with an Achilles tendon allograft, hamstring tendon autograft/allograft, tibialis anterior tendon allograft, or the BPTB allograft. Both cruciate ligaments are reconstructed arthroscopically. The ACL tunnels are placed in the center of its anatomic insertion in tibia and in its isometric or anatomic insertion in femur. A transtibial tunnel technique for PCL reconstruction is used. The PCL tibial tunnel is drilled first under arthroscopic guidance using the PCL guide. The ACL tibial guide is drilled at least 2 cm proximal to the PCL tunnel to ensure that wide enough bone bridge remains between these tunnels. Fluoroscopy is used to ensure the right guidewire placement. Sequence of bicruciate ligament reconstruction with BPTB grafts. Drill PCL tibial tunnel first, then ACL tibial tunnel. Drill ACL femoral tunnel, then PCL femoral tunnel. Pass PCL graft through tibial tunnel and fix in femoral tunnel. Pass ACL graft through tibial tunnel and fix in femoral tunnel. Fix PCL graft on tibia at 90° of flexion with anteromedial step off. Fix ACL graft on tibia at extension. Rehabilitation Our protocol after bicruciate ligament reconstruction with MPTB grafts has been very active. Progressive range of motion is started early after the operation with an unlocked functional brace. If simultaneous suturation of a meniscus tear has been performed, motion is limited to 60° of flexion during the first 4 weeks. Progression from partial to full weight bearing is done over the first 6 weeks. Quadriceps exercises are progressed to open-chain knee extension exercises early as well as closed-chain hamstring exercises. Brace is discontinued after 12 weeks


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 56 - 56
1 Aug 2012
Roos P Button K Rimmer P van Deursen R
Full Access

ACL injured patients show variability in the ability to perform functional activities (Button et al., 2006). It is unknown whether this is due to differences in physical capability or whether fear of re-injury plays a role. Fear of re-injury is not commonly addressed in rehabilitation. This study aimed to investigate whether fear of re-injury impacts rehabilitation of ACL injured patients. An initial group of five ACL reconstructed participants (ACLR, age: 30±11 years, weight: 815±115 N, height: 1.74±0.07 m, all male), five ACL deficient participants (ACLD, age: 31±12 years, weight: 833±227 N, height: 1.80±0.11 m, four male and one female), and five healthy controls (age: 30±3 years, weight: 704±126 N, height: 1.70±0.09 m, three male and two female) were compared. Fear of re-injury was assessed using the Tampa Scale for Kinesiophobia (Kvist, 2004). Quadriceps strength was measured on a Biodex dynamometer. Functional activity was assessed by a single legged maximum distance hop (on the injured leg for ACL patients). Motion analysis was performed with a VICON system, and a Kistler force plate. Hop distance was calculated using the ankle position. The peak knee extension moment during landing, and the knee angle at this peak moment were calculated in VICON Nexus. The ACLD group scored worse on the Tampa scale for Kinesiophobia than the ACLR group (32±4 and 26±4). The ACLD patients did not hop as far as the ACLR and control groups (1.0±0.3, 1.3±0.1 and 1.4±0.3 m). The peak knee extension moments during landing were lowest in the ACLD group (263±159 Nm), slightly higher in the control group (354±122 Nm) and highest in the ACLR group (490±222 Nm), while knee flexion angles at these moments were similar (ACLD: 28±11, ACLR: 33±7 and control: 36±13 degrees). The ACLD group had weaker quadriceps than the control group, while the ACLR group was stronger (143±44 Nm, 152±42, and 167±50 Nm respectively). Fear of re-injury and decreased quadriceps strength potentially both impact on the functional performance of ACL injured patients. Rehabilitation of ACL injured patients could therefore be improved by addressing strength and fear of re-injury. Future research with more participants will further clarify this


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 31 - 31
10 May 2024
Clatworthy M Rahardja R Young S Love H
Full Access

Background. Anterior cruciate ligament (ACL) reconstruction with concomitant meniscal injury occurs frequently. Meniscal repair is associated with improved long-term outcomes compared to resection but is also associated with a higher reoperation rate. Knowledge of the risk factors for repair failure may be important in optimizing patient outcomes. Purpose. This study aimed to identify the patient and surgical risk factors for meniscal repair failure, defined as a subsequent meniscectomy, following concurrent primary ACL reconstruction. Methods. Data recorded by the New Zealand ACL Registry and the Accident Compensation Corporation, the New Zealand Government's sole funder of ACL reconstructions and any subsequent surgery, was reviewed. Meniscal repairs performed with concurrent primary ACL reconstruction was included. Root repairs were excluded. Univariate and multivariate survival analysis was performed to identify the patient and surgical risk factors for meniscal repair failure. Results. Between 2014 and 2020, a total of 3,024 meniscal repairs were performed during concurrent primary ACL reconstruction (medial repair = 1,814 and lateral repair = 1,210). The overall failure rate was 6.6% (n = 201) at a mean follow-up of 2.9 years, with a failure occurring in 7.8% of medial meniscal repairs (142 out of 1,814) and 4.9% of lateral meniscal repairs (59 out of 1,210). The risk of medial failure was higher in patients with a hamstring tendon autograft (adjusted HR = 2.20, p = 0.001), patients aged 21–30 years (adjusted HR = 1.60, p = 0.037) and in those with cartilage injury in the medial compartment (adjusted HR = 1.75, p = 0.002). The risk of lateral failure was higher in patients aged ≤ 20 years (adjusted HR = 2.79, p = 0.021) and when the procedure was performed by a surgeon with an annual ACL reconstruction case volume of less than 30 (adjusted HR = 1.84, p = 0.026). Conclusion. When performing meniscal repair during a primary ACL reconstruction, the use of a hamstring tendon autograft, younger age and the presence of concomitant cartilage injury in the medial compartment increases the risk of medial meniscal repair failure, whereas younger age and low surgeon volume increases the risk of lateral meniscal repair failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 97 - 97
1 Sep 2012
Dervin G Thurston PR
Full Access

Purpose. Patients with anterior cruciate ligament (ACL) deficiency and symptomatic medial compartment osteoarthritis (OA) present a challenge in management. These are often younger than typical primary OA patients and aspire to remain athletically active beyond simple ADLs. Combined ACL reconstruction and valgus tibial osteotomy (ACLHTO) is a well documented surgical option for patients deemed wither too young or too active for total knee arthroplasty. Unicompartmental knee arthroplasty (UKA) is an established surgical treatment for symptomatic medial osteoarthritis of the knee refractory to conservative management. A commonly cited contraindications is symptomatic ACL deficiency because of previous reports detailing premature failure through loosening of the tibial component. Improved results and endoscopic ACL reconstructive procedures have led to an enticing concept of combining ACL reconstruction with medial unicompartmental knee arthroplasty (ACLUKR) for those ACL-deficient medial osteoarthritic (OA) knees. We sought to compare the outcomes in 2 cohorts of patients who underwent either ACLHTO or ACLUKR for this clinical problem. Method. Patients presenting with symptomatic bone on bone medial compartment OA and concomitant ACL deficiency (clinical or asymptomatic) were evaluated for surgery after exhausting non operative management. Patients who were under 40 or had plans to return to high impact loading sports and/or who had more moderate OA were offered combined ACL – medial opening wedge tibia osteotomy as a surgical procedure of choice. Patients were considered for combined ACL Oxford replacement if they were primarily seeking pain relief and were not engaged or aspiring to return to high impact or pivoting sports. All cases but one were concurrent ACL with either HTO or UKR with autogenous hamstring grafts used in all but 2 cases. Results. Thirty of 34 consecutive cases were available for follow-up for a rate of 88%. The median ages for 14 cases of ACLUKR was 51 (range 43 60) whereas 16 patients with ACLHTO had median age 43.4 (range 32 −59). Median FU was 4.65 yrs with minimum 2 year follow up (range 2–8.3). Three of the cases were revision ACL cases all from previous Gore-Tex reconstructions. All but the first patient had concomitant ACL and Oxford unicompartmental knee replacement at 1 surgical sitting and are the subject of this report. The first patient had an autogenous patella bone tendon bone graft performed 6 months prior to the UKA. There were similar change scores for patients in both groups. For ACLUKR, WOMAC pain improvements from 48.1 10.2 SD preoperatively to 79.0 17 SD postop. For ACLHTO, WOMAC improvements from 55.1 13.2 SD preoperatively to 85.0 17 SD postop. To date there have been no cases of infection or bearing dislocation in the ACLUKR group. One patient in the ACLHTO group was revised to TKR for ongoing pain and postoperative flexion contracture. Patient activities ranged from ambulation to vigorous hiking, tennis, and downhill skiing in the UKR group whereas a few in the ACLHTO group were also running mid distances. Overall satisfaction was similar in both groups. Conclusion. ACL reconstruction can safely be combined with medial UKR. The procedure has been used in younger patients with a view toward bone preservation while anticipating need for future revision. Both cohorts showed similar improvements and can be considered. The choice should be geared toward patient athletic demand. While short term results are encouraging though longer term data are necessary to thoroughly evaluate the role of this procedure in patients with medial compartment osteoarthritis and ACL deficiency


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 52 - 52
1 Jan 2003
Porteous AJ Ackroyd CE
Full Access

The aim of this study was to assess the value of plain AP and lateral radiographs in determining ACL condition in medial unicompartmental osteoarthritis. Background: A functioning ACL has been shown to be important in the success of certain unicompartmental knee replacements. White (2001) has shown MRI to be too sensitive in this age group of patients. Keyes (1992) suggested that stress radiographs were necessary to accurately assess ACL integrity. Method: One hundred and twenty-six patients undergoing knee arthroplasty for medial osteoarthritis, had their ACL’s graded as Normal, Frayed or Absent intra-operatively. Standard pre-operative AP and lateral standing radiographs were graded by the Ahlback system. On the lateral view, the plateau was divided into 5 zones from anterior to posterior. The zone, in which the point of deepest wear occurred, was recorded. Results: There was a significant difference between the occurrence of deepest wear in the anterior three zones versus the posterior two zones for ACL normal and absent knees (. 2. = 46.85, P< 0.001). There was a significant difference between the occurrence of normal and absent ACL’s in Ahlback grades ≤3 versus ≥4 (. 2. = 53.8, P< 0.001). There was a moderately strong correlation between both zone of deepest wear on lateral radiograph and Ahlback grade with ACL condition (Spearman’s rho = 0.62 and 0.69 respectively). The Positive Predictive Values for the ACL being normal are 64% for Ahlback grades 3 or less and 67% for Zone of deepest wear in the anterior 3 zones. The Positive Predictive Values for the ACL being intact (but not necessarily normal) are 95% for Ahlback grade 3 or less; 91% for Zone of deepest wear in the anterior 3 zones; and 97% if these criteria are combined. Combining Ahlback grade ≤3 with wear in the anterior 3 zones also gave a Negative Predictive Value of 92% for the ACL not being normal. Conclusion: There is a “watershed” in ACL condition between Ahlback grade 3 and 4. Prostheses requiring Normal or Intact ACL’s should only be performed if Ahlback grade is ≤3. Standard radiographs can reliably predict ACL condition with high Positive and Negative predictive values


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 175 - 175
1 May 2011
Hohmann E Bryant A Tetsworth K Urbaniak M
Full Access

Introduction: Anthropometric anatomical factors may influence mechanical and functional stability of joints. An increased posterior tibial slope places the anterior cruciate ligament at a theroretical biomechanical disadvantage. An increased posterior tibial slope can potentially alter forces during landing tasks by either increasing anterior tibial translation and/or ACL loading. The purpose of this study is to investigate the relationship between posterior tibial slope and anterior cruciate ligament injuries. It is hypothesized that subjects with an ACL injury have an increased posterior tibial slope compared to a normal population. Methods: Posterior tibial slope in 211 patients (154 male, 57 female) aged 15–49 who underwent anterior cruciate ligament reconstruction was measured using the posterior tibial cortex as reference. A matched control group was used for comparison. Results: The average posterior tibial slope in the ACLR population was 6.1 degrees while the control group had average values of 5.4 degrees. This finding nearly reached statistical significance (p=0.057). In the male population average values were 5.5 degrees in the ACLR group and 5.9 in the control group. This was not significant (p=0.21). However there was a significant difference (p=0.04) in the female group. ACLR females had higher values 6.5 degrees whereas the control group had average values of 5.2 degrees. Discussion: Increased posterior tibial slope decreases the inclination of the ACL and potentially decreases vector force during dynamic tasks. It may further result in suboptimal length-tension relationships of agonistic muscles, increases in electromechanical delays and result in lower force development further leading to increased vector forces on the ACL. Posterior tibial slope angles were slightly smaller than with other published studies. However by using the posterior tibial cortex as reference an average of 3 degrees must be added to the measured values. We could not confirm the results of previous studies demonstrating an increased degree of posterior tibial slope in ACL injured patients. However we demonstrated a significant difference in tibial slope in females. Based on our results an increased posterior tibial slope is not a risk factor in males but possibly contributes to ACL injuries in females. Increased posterior tibial slope may be one of the reasons why females have a higher incidence of ACL injuries


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 154 - 154
1 May 2016
Zumbrunn T Varadarajan K Rubash H Malchau H Li G Muratoglu O
Full Access

INTRODUCTION. In native knees anterior cruciate ligament (ACL) and asymmetric shape of the tibial articular surface with a convex lateral plateau are responsible for differential medial and lateral femoral rollback. Contemporary ACL retaining total knee arthroplasty (TKA) improves knee function over ACL sacrificing (CR) TKA; however, these implants do not restore the asymmetric tibial articular geometry. This may explain why ACL retention addresses paradoxical anterior sliding seen in CR TKA, but does not fully restore medial pivot motion. To address this, an ACL retaining biomimetic implant, was designed by moving the femoral component through healthy in vivo kinematics obtained from bi-planar fluoroscopy and sequentially removing material from a tibial template. We hypothesized that the biomimetic articular surface together with ACL preservation would better restore activity dependent kinematics of normal knees, than ACL retention alone. METHODS. Kinematic performance of the biomimetic BCR design (asymmetric tibia with convex lateral surface), a contemporary BCR implant (symmetric shallow dished tibia) and a contemporary CR implant (symmetric dished tibia) was analyzed using KneeSIM software. Chair-sit, deep knee bend, and walking were analyzed. Components were mounted on an average bone model created from magnetic resonance imaging (MRI) data of 40 normal knees. Soft-tissue insertions were defined on the average knee model based on MRI data, and mechanical properties were obtained from literature. Femoral condyle center motions relative to the tibia were tracked to compare different implant designs. RESULTS. During simulated chair-sit, the biomimetic BCR implant showed knee motion similar to that reported for healthy knees in vivo including medial pivot rotation with greater rollback of the lateral femoral condyle (5 mm medial vs. 11 mm lateral). The CR implant showed posterior femoral subluxation in extension, paradoxical anterior sliding until 60° flexion followed by limited rollback until 105° with no medial pivot rotation. The conventional BCR implant reduced initial posterior shift of the femur in extension, however, medial pivot rotation and steady posterior rollback was not achieved. Similar trends were also found for deep knee bend activity. During walking the CR implant showed posterior subluxation in extension followed by anterior motion similar to the chair-sit activity. Both BCR implants showed less femoral excursion without posterior subluxation similar to published in vivo kinematics data for bi-uni patients. CONCLUSION. By simulating a variety of daily activities with different ranges of knee motion we were able to show that the ACL preserving biomimetic TKA implant could restore activity dependent normal knee kinematics unlike contemporary ACL retaining and ACL sacrificing implants. For chair-sit activity there was a clear medial pivot pattern for the biomimetic BCR design (unlike any other implant), while for lower flexion activities there was no medial pivot apparent in our simulations. These activity dependent knee motions are consistent with published in vivo kinematics and confirmed our hypothesis that biomimetic articular surface together with ACL preservation may be required to restore normal knee function. The biomimetic BCR design with its anatomical articular surface together with ACL preservation may provide patients with a more normal feeling knee following TKA surgery


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 189 - 190
1 Mar 2010
Norsworthy C
Full Access

Introduction: The use of the LARS (Ligament Augmentation and Reconstruction System. ®. , Corin) ligament for the surgical treatment of ACL deficiency has increased exponentially in Australia, particularly over the past 12 months. Given the well documented failure of synthetic ACL implants used during the 1980s, a review of the current literature regarding the LARS is required. Methods and Results: There is a paucity of current literature regarding the use of the LARS in the surgical management of ACL deficiency. 1 laboratory based, and 3 clinical publications were available for review. The transcriptions of 4 podium presentations were also available for review. Therefore, a total of 8 papers were analysed. The maximum duration of patient follow-up in any of the papers was 10 years. All papers presented results of at least 2 years follow up. In all papers, standardized outcome measures produced results equivalent to those obtained using traditional ACL reconstruction techniques. Complications were detailed in all papers, with each reporting the absence of synovitis in patients for whom the LARS had been used. Conclusion: Whilst there is insufficient long-term evidence to support the use of the LARS, the early results are promising. In particular, the problem of postoperative synovitis and synthetic ligament abrasion that led to the spectacular failure of early synthetic ACL designs appears to be absent in patients treated with the LARS. The LARS should be used in accordance with the strict patient selection criteria and technical guidelines recommended by the designing surgeon


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 234 - 234
1 May 2012
Hohmann E Tay M Tetsworth K Bryant A
Full Access

Anthropometric anatomical factors may influence mechanical and functional stability of joints. An increased posterior tibial slope places the anterior cruciate ligament at a theroretical biomechanical disadvantage. An increased posterior tibial slope can potentially alter forces during landing tasks by either increasing anterior tibial translation and/or ACL loading. The purpose of this study is to investigate the relationship between posterior tibial slope and anterior cruciate ligament injuries. It is hypothesised that subjects with an ACL injury have an increased posterior tibial slope compared to a normal population. Posterior tibial slope in 211 patients (154 male, 57 female), aged 15–49, who underwent anterior cruciate ligament reconstruction was measured using the posterior tibial cortex as reference. A matched control group was used for comparison. The average posterior tibial slope in the ACLR population was 6.1 degrees, whilst the control group had average values of 5.4 degrees. This finding nearly reached statistical significance (p=0.057). In the male population, average values were 5.5 degrees in the ACLR group and 5.9 in the control group. This was not significant (p=0.21). However, there was a significant difference (p=0.04) in the female group. ACLR females had higher values 6.5 degrees whereas the control group had average values of 5.2 degrees. Increased posterior tibial slope decreases the inclination of the ACL and potentially decreases vector force during dynamic tasks. We could not confirm the results of previous studies demonstrating an increased degree of posterior tibial slope in ACL injured patients. However, we demonstrated a significant difference in tibial slope in females. Based on our results, an increased posterior tibial slope is not a risk factor in males but possibly contributes to ACL injuries in females. Increased posterior tibial slope may be one of the reasons why females have a higher incidence of ACL injuries


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 577 - 577
1 Aug 2008
McDonnell S Rout R Dodd C Murray D Price A
Full Access

Anteromedial osteoarthritis is a distinct phenotype of osteoarthritis. The arthritic lesion on the tibia is localised to the anteromedial quadrant with an intact ACL. Deficiency of the ACL leads to a progression to tricompartmental disease. Within the spectrum of intact ACL a varying degree of ligament damage is seen. Our aim was to correlate the progression of ACL damage to the geographical extent of disease and the degree of cartilage loss on the tibial plateau. We systematically digitally mapped 50 tibial plateau resection specimens from clinical photographs of patients undergoing unicompartmental arthroplasty, additionally the damage to their ACL was graded (0: normal, 1:synovium loss, 2:longitudinal splits). These images were imported into image analysis software. Accurate measurements were made of the dimensions of the specimen. Measurements included the AP distance to the anterior and posterior aspect of the lesion, and the distance to the start of the macroscopically non damaged cartilage. The areas of cartilage damage and full thickness loss were also recorded. The results were represented as a % of total area to account for variation in size of the resection specimens. We compared % of full thickness loss in patients with normal to those with damaged, but functionally intact ligaments. All specimens had a similar macroscopic appearance. A significant difference was seen with the progression of ACL damage and area of eburnation of bone. Using an unpaired t test, a significant difference in area of % full thickness cartilage loss (P=0.047) was seen between patients with a normal and longitudinal splits within their ACL. No correlation between the clinical status of the ACL and start or finish point of cartilage loss on the tibial plateau. We surmise that the progression from anteromedial to tricompartmental osteoarthritis of the knee may be related to the graduated damage of the ACL


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 129 - 130
1 Mar 2008
Fening S Kambic H Scott J Van Den Bogert A Mclean S Miniaci A
Full Access

Purpose: Previous research has reported that increasing the posterior tibial slope through an opening wedge osteotomy results in an anterior shift in the position of the tibia relative to the femur. However, the effect of this on anterior cruciate ligament (ACL) strain remains insufficiently understood. The purpose of this study was to examine the relationship between tibial slope and tibial translation, as well as between tibial slope and ACL strain. It was hypothesized that increasing the posterior tibial slope would result in an increase in anterior tibial translation thereby increasing strain in the ACL. Methods: Five cadaveric knees were subjected to a randomized experimental design study. One knee was excluded due to failure of a strain gauge during experimentation, resulting in data for four knees. The femoral and tibial portions of the knee were potted with PMMA and fixed using fixation pins. An anterior-based osteotomy was performed with no osteotomy plate present. A strain gauge was then placed in the anteromedial bundle of the ACL. Each knee was mounted at a flexion angle of 15° and loaded with various combinations of A-P loads (18N, 108N, 209N) and axial loads (216N, 418N), according to the study design. Osteotomies of 5mm and 10mm were then performed and measurements of strain and tibial translation were taken after each according to the study design. Tibial slopes were determined through lateral fluoroscopic imaging. Results: As posterior tibial slope increased, anterior tibial translation increased as anticipated. However, contrary to expectations, as posterior slope increased, ACL strain decreased. One explanation for this result could be that by performing the osteotomy, the insertions sites of the ACL were being moved closer together resulting in increased ACL laxity. At higher slope angles, translation levels off, suggesting constraint of some tissue besides the ACL. Conclusions: Although increasing the tibial slope through opening wedge osteotomy leads to an anterior tibial translation, there is no increase in strain on the ACL. Further studies are needed to examine the effect of opening wedge osteotomy on other soft tissue restraints of the knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 97 - 97
1 Oct 2012
Hammoud S Suero E Maak T Rozell J Inra M Jones K Cross M Pearle A
Full Access

Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior tibial translation (mean = 6.7 mm; SD = 3.0 mm; P<0.05). No significant change in translation was seen after sectioning the POL (mean = 7.0 mm, SD = 4.0 mm; P>0.05). Sectioning the POL did not significantly alter tibiofemoral translation in the ACL deficient knee during the Lachman and pivot shift tests. This study brings into question whether injuries to the POL require reconstruction in conjunction with ACL reconstruction. More studies are needed to further characterise the role of the injured POL in knee stability and its clinical relevance in the ACL deficient and reconstructed knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 101 - 101
1 Oct 2012
Hammoud S Suero E Maak T Rozell J Inra M Jones K Cross M Pearle A
Full Access

Controversies about the management of injuries to the soft tissue structures of the posteromedial corner of the knee and the contribution of such peripheral structures on rotational stability of the knee are of increasing interest and currently remain inadequately characterised. The posterior oblique ligament (POL) is a fibrous extension off the distal aspect of the semimembranosus that blends with and reinforces the posteromedial aspect of the joint capsule. The POL is reported to be a primary restraint to internal rotation and a secondary restraint to valgus translation and external rotation. Although its role as a static stabiliser to the medial knee has been previously described, the effect of the posterior oblique ligament (POL) injuries on tibiofemoral stability during Lachman and pivot shift examination in the setting of ACL injury is unknown. The objective of this study was to quantify the magnitude of tibiofemoral translation during the Lachman and pivot shift tests after serial sectioning of the ACL and POL. Eight knees were used for this study. Ligamentous constraints were sequentially sectioned in the following order: ACL first, followed by the POL. Navigated mechanised pivot shift and Lachman examinations were performed before and after each structure was sectioned, and tibiofemoral translation was recorded. Lachman test: There was a mean 6.0 mm of lateral compartment translation in the intact knee (SD = 3.3 mm). After sectioning the ACL, translation increased to 13.8 mm (SD = 4.6; P<0.05). There was a nonsignificant 0.7 mm increase in translation after sectioning the POL (mean = 14.5 mm; SD = 3.9 P>0.05). Mechanised pivot shift: Mean lateral compartment translation in the intact knee was −1.2 mm (SD = 3.2 mm). Sectioning the ACL caused an increase in anterior tibial translation (mean = 6.7 mm; SD = 3.0 mm; P<0.05). No significant change in translation was seen after sectioning the POL (mean = 7.0 mm, SD = 4.0 mm; P>0.05). Sectioning the POL did not significantly alter tibiofemoral translation in the ACL deficient knee during the Lachman and pivot shift tests. This study brings into question whether injuries to the POL require reconstruction in conjunction with ACL reconstruction. More studies are needed to further characterise the role of the injured POL in knee stability and its clinical relevance in the ACL deficient and reconstructed knee


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 252 - 252
1 May 2006
Robinson JR Bull AMJ Amis AA
Full Access

Introduction: By characterising ACL strain behaviour in intact and posteromedial deficient knees under a variety of external loading conditions the aim of this work was to demonstrate whether posteromedial corner insufficiency could increase strain in an ACL reconstruction graft. Materials and Methods: 15 fresh cadaveric knees were mounted on a materials testing machine. A miniature extensometer was implanted onto the anteromedial bundle (AMB) of the ACL. The knees were loaded in: Anterior draw (150N), varus/valgus rotation (5Nm) and internal/external rotation (5Nm) at 0°, 15°, 30°, 60° & 90° flexion. The posteromedial corner structures – posteromedial capsule, superficial MCL and deep MCL – were cut sequentially and the effect AMB strain measured. Results: Strain data for analysis was available for 11 intact knees: Tibial internal rotation produced increased strain in the AMB at all angles of knee flexion (p< 0.05). Tibial external rotation reduced ACL strain at 0° to 30° (p< 0.05) and 60° to 90° knee flexion (p> 0.05). Anterior loading of the tibia increased AMB strain. With the tibia free to rotate, strain was highest at 90 degrees knee flexion (5.3%) and lowest at 0 degrees (1.6%). Fixed internal and external tibial rotation reduced AMB strain produced by a 150 N anterior drawer force at all knee flexion angles. Strain data for analysis was available for 6 Posteromedial Corner deficient knees:. With the tibia free to rotate or when locked in internal rotation, cutting the posteromedial structures had no effect on AMB strain with a 150 N anterior drawer force applied to the tibia. However, with the tibia locked in external rotation, cutting the posteromedial structures increased AMB strain at 60 and 90 degrees flexion. This difference however did not reach statistical significance. Conclusions: The findings that division of the posteromedial structures may cause increased AMB strain and that there is significant load sharing by the peripheral ligamentous structures, suggests that valgus and rotational stresses to the knee in a patient with posteromedial corner insufficiency could lead to increased strain in the ACL graft, that would otherwise have been restrained by the posteromedial corner complex. It would also therefore seem to be appropriate to recommend the use of a collateral ligament brace in the post-operative period when combining a repair of the posteromedial structures and the ACL, to again prevent excessive graft strains


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 257 - 257
1 Nov 2002
Indelli. P Dillingham M Schurman D
Full Access

Objective: The treatment of Anterior Cruciate Ligament (ACL) instability resulting from incomplete tears or elongation in continuity has been historically treated either conservatively or by graft replacement. The literature is sparce with regard to alternative reparative surgical treatment of this condition. We report our early experience using a thermal shrinkage treatment on 11 consecutive knees suffering from this condition in patients experiencing continuing instability. Methods: Eleven patients underwent ACL electrothermal monopolar treatment at our institution between 1998 and 1999. All of these patients presented a difference of 6 mm or more when comparing the involved to the uninvolved side using KT-1000 evaluation. They showed ACL incomplete tears or elongation in continuity at the time of the arthroscopic evaluation. A single electrothermal device (Oratec, Oratec Interventions, Menlo Park, CA) was used in all of the cases. Rehabilitation protocol included immobilization and non-weight-bearing for 6 weeks. A one-year minimum follow-up study was conducted in all of the patients following the IKDC rating system. Results: The overall outcome at a one-year minimum F.U. was normal or nearly normal in all of the patients. They also showed a 30 pound side to side difference less than 5 mm. They were allowed to return to running 3 months after ACL shrinkage and to full unrestricted sports after 6 months. Conclusions: The thermal repair of ACL-insufficient knees represents an emerging alternative treatment to standard techniques. The primary controindication for this technique is discontinuity of the ligament. Particular attention must be paid to patient compliance during ligament healing in its early stages


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 257 - 257
1 Nov 2002
Parmar P Johnson D
Full Access

Purpose: To document healing of the anterior cruciate ligament. Introduction: Conventional wisdom holds that the anterior cruciate ligament (ACL) does not heal. In an athlete the ACL deficient knee is likely to be symptomatic and lead to functional instability. This has led to the belief that all ACL tears in the active athlete require reconstruction. Some ACL tears in recreational athletes are successfully treated conservatively with activity modification and bracing. A literature search was performed which found three articles on ACL healing. These articles felt that complete ACL tears could heal if patients were properly braced and rehabilitated. Materials and Methods: At the Carleton University Sports Medicine Clinic we retrospectively reviewed ACL tears diagnosed by the Lachman, pivot shift, and KT-1000 arthrometer testing. We then examined those whose clinical exam became stable by the same three tests. The latest follow up exam was performed by the same examiner (P.P). At the follow up exam, knee function was evaluated with the expanded IKDC form. Results: Nine patients were found to be asymptomatic and stable after an initial diagnosis of an ACL tear. In follow up the Lachman test had a good endpoint, the pivot shift was normal and the KT – 1000 manual max was less than 3mm. The IKDC results showed 3/9 were grade A, 5/9 were grade B and 1/9 was grade C. The clinical implication: ACL tears should be treated initially conservatively since in a small percentage of patients, the ACL tear can heal


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 7 - 7
1 Jan 2016
Madadi F
Full Access

A group of Athletes with torn ACL (insufficient knees) suffer from bowleg or valgus knees. AT this points we don't have a general consensus in literature. This study is based on a randomized clinical trial with double blind randomization of young athletes not more than 36 years and not over than 82 kg weight. Each groups contained by 30 patient with ACL deficient knees and bowlegs with Mikolicz line on the most medical 1/3rd of medial condyle of femur on worse. with follow up of 2 to 6 years and in all three groups we tried to control the knee by KT 2000, Tegner's score and IKDC and lysholm's scores in all patient. At final exam we had chance to meet 29 patients with simultaneous HTO (open wedge + plate) and ACL – R and 26 patients with HTO 1st, and 6 months later for ACL – R and only 24 patients with ACL – R 1st, 6 patients of this group and a patient of HTO 1st didn't show for rest of their procedures. Conclusion: by P value (o.o1) Simultaneous ACL – R and HTO had higher rate of success and between two other groups except osteoarthritis out come in short period of time (2 – 6 years) HTO had better results than ACL –R 1st with P value of (0.05)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 51 - 51
1 May 2017
Frame M
Full Access

Aim. The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Introduction. Placements of the femoral tunnels for ACL reconstruction have changed over the years. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all as it is an average. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint. Materials & Methods. We took a standard protocol MRI scan of a patient's knee without ACL injury transferred the DICOM files to a personal computer running OsiriX (Pixmeo, Geneva, Switzerland.) and analysed it for a series of specific anatomical landmarks. OsiriX is an image processing software dedicated to DICOM images. We marked the most posterior edge of the articular cartilage on the lateral wall of the notch (1), the most anterior edge of the articular cartilage of the lateral wall of the notch (2), the most inferior edge of the articular cartilage of the lateral wall of the notch (3) and the center of the femoral footprint of the native ACL. Distances were then calculated to determine the position relative to the three articular cartilage points of the center of the ACL footprint. These measurements and points were then utilised to create a 3D computer aided design (CAD) model of a custom guide. This was done using the 3D CAD program 123Design (Autodesk Ltd., Farnbourgh, Hampshire). This 3D model was then exported as an STL file suitable for 3D printing. The STL file was then uploaded to an online 3D printing service and the physical guide was created in transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel. The models created were then measured using vernier calipers to confirm the accuracy of the final guides. Results. The MRI data showed point 1 (AP), point 2 (distal-ACL), point 3 (Ant-ACL) and point 4 (Post-ACL) at a distance of 59.83, 15, 45.8 and 13.9 respectively. For the 3D CAD model, points 1, 2, 3 and 4 were at a distance of 59.83, 15, 45.8 and 13.9 respectively. For the PA220 plastic model, points 1, 2, 3 and 4 were at a distance of 59.86, 14.48, 45.85 and 13.79 respectively. For the 316L stainless steel model, points 1, 2, 3 and 4 were at a distance of 59.79, 14.67, 45.64 and 13.48 respectively. Lastly, for the photopolymer model, points 1, 2, 3 and 4 were at a distance of 59.86, 14.2, 45.4 and 13.69 respectively. The p-value comparing MRI/CAD vs. PA220 was p=0.3753; for the comparison between MRI/CAD vs. 316L, p=0.0683; lastly for the comparison between MRI/CAD Vs. Photopolymer, p=0.3450. The models produced were accurate with no statistical difference in size and positioning of the center of the ACL footprint from the original computer model and to the position of the ACL from the MRI scans. The costs for the models 3D printed were £3.50 for the PA220 plastic, £15 for the transparent photopolymer and £25 for the 316L stainless steel. The time taken from MRI to delivery for the physical models was 7 days. Discussion. Articles regarding the creation of 3D printed custom ACL guides from the patients contralateral knee do not feature in current literature. There has been much research on custom guides for other orthopaedic procedures such as in total knee arthroplasty for the accurate placement of implants. There has also been research published on the creation of custom cutting jigs from CT for complex corrective osteotomy surgery. This study serves as the first step and a proof of concept for the accurate creation of patient specific 3D printed guides for the anatomical placement of the femoral tunnel for ACL reconstruction. The guides were easy to create and produce taking only a week and with a cost of between £3.50 and £25. The design of the guides was to allow the tip of a standard Chondro Pick (Arthrex inc., Naples, Florida.) (3mm) used to mark the starting point of the femoral tunnel to enter through the guide. The next step for this research is to create guides from cadaveric matched knees and utilise the guides to carry out the creation of the femoral tunnels and to analyse of the placement of the tunnel in relation to the contralateral knee


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 274 - 275
1 May 2009
Drocco L Graziano E Testa D Dolfin M Massazza G Bistolfi A Cenna E Crova M
Full Access

Aims: ACL lesion is one of the most frequent event in sport injuries. It is generally a complete lesion which does not evolve to a spontaneous healing. In particular, after non surgical treatment, ACL often repairs on PCL with a residual articular laxity. A healing response technique has been described to treat ACL incomplete tears in skeletally immature athletes. Our technique is based on microfractures next to the ACL femoral insertion to obtain a scar reinforcement thanks to the action of mes-enchymal stem cells. Methods: The authors report their experience using the same surgical technique and rehabilitation protocol in patients selected by type of lesion, age and time from injury. The authors selected for the study young-middle age active patients, with incomplete ACL lesion: 27 patients (mean age of 23 years) have been evaluated, inclusion criteria was Lachman test < 1 cm, negative Jerk test and a proximal partial tear of ACL on MRI. Before and after surgery the patients have been evaluated using KT1000, MRI, clinical examination and Lysholm score with a 3 years average follow up. Results: Clinical examination showed a significative improvement in Lysholm score from 63 to 85 and a minor anterior tibial translation measured with KT1000 (from a mean difference between the two legs of 5 mm preoperatively to 2 mm postoperatively). In only one case the ACL didn’t seem to heal and was necessary the traditional reconstruction. MRI at one year pointed out a reparative healing in almost all cases. Conclusions: according to these results the healing response procedure can restore a subjective and objective stability and knee function, with proper patient selection and strictly following the rehabilitation protocol despite of age and time of lesion


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 87 - 87
1 Mar 2009
Corradini C Schipani D Zanotta M Verdoia C
Full Access

Despite several anatomical and neurophysiological studies have demonstrated the sensory role of anterior cruciate ligament (ACL), it is still unclear how significant the absence of the ACL will affect knee proprioception. Also because some mechanoreceptors has been discovered in the injured bundle commonly resected during ACL reconstruction. In fact recently it has been observed that subjects with long standing ACL deficiency have not a knee joint pro-prioceptive deficit as measured by threshold of passive movement detenction and the ability to reproduce flex-ion angles, commonly accepted methods. The aim of this study was to investigate the possibility to recognize a sensorial and behavior impairment in ACL deficient knee. Through a computerized device the kinaesthetic data were collected from 120 sportsmen between 20–49 years (mean 32,4) affected by unilateral isolated ACL injury diagnosed with MRI and verified arthroscopically. The protocol consisted in four exercises, two bipodal on static and dynamic stance and two monopodal on healthy and injured lower limb. The balance index was divided in four areas on two dimensional plane for a qualitative assessment. The mathematical and statistical elaboration revealed on bipodal static test a significant and costant displacement on the left side indipendently by the injured side and age. The kinaesthetic awarness was confirmed also by a significant increase of balance index in all exercises. Further studies are necessary to a better knowledge as a possible new tool. In conclusion, this is the first report of a typical sensorial and behavior impairment in ACL deficient knee with intriguing clinical significance


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 425 - 425
1 Oct 2006
Presti ML Bruni D Zaffagnini S De Pasquale V Reggiani LM Marcacci M
Full Access

Purpose: Ultrastructural analysis of PT graft for ACL single bundle reconstruction. Materials and methods: Arthroscopical biopsies for new meniscal lesions at 6-12-24mm-5-10 ys. All cases with IKDC normal/nearly normal and KT2000 excellent/good. Samples prepared with Karnowsky fixing and urani-lacetate solution. Fibril diameter and transversal area measured by LEICA QUIN in 5 cuts randomly selected for each sample. Results: 6 months biopsy showed severe P.T. modifications, with a decrease of larger fibrils, substituted with smaller one with plenty of extra cellular matrix. Oxitalan fibers, macrophagic cells and tenocytes were observed. At 12 months compact fascicles of small fibrils (50–60 nm) divided the larger one, similar to a normal tendon. At 24 months graft modifications were increased with wide compact fasciclesvariously oriented. At 5 and 10 years the modifications were similar to those observed at 2 years, with the graft not completely transformed in native ACL structure. Discussion: The results showed that PT graft used for ACL single bundle reconstruction certainly undergoes a neoligamentization process up to two years. At longer follow-up the foresaw complete remodelling in a normal ACL was not observed. Heterogeneous fibrils presence suggests incomplete ligamentization or its impossible complete realization in single bundle ACL reconstructions


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 53 - 53
1 Jan 2004
Plaweski S Julliard R Champeloux G Ionescu S Schuster C Merloz P
Full Access

Purpose: No conventional surgical technique for ligament reconstruction can be used in all cases to achieve ideal position of the transplant. Navigation systems without visualisation of the anterior cruciate ligament should meet the requirements. This is an operative strategy based on one or more computer assisted procedures enabling ligament reconstruction without the need for conventional pre- per, or postoperative imaging. The principle is based at the present time on the use of a station (computer, localisers, display screen, command pedal) used for processing data (spatial measurements and positioning) delivered by markers fixed on rigid bodies and tools (palpation, aiming tools). Material and methods: This study was conducted on ten cadaver knees. Each knee was instrumented with the station. Joint kinetics were recorded with and without the ACL and after harvesting the transplant: patellar ligament and hamstring ligaments. Bone morphing was used to draw the tibial and femoral surfaces. Two types of aiming tools were tested by recording the data points issuing from the tibial output and the femoral input. The position of the femoral and tibial holes was determined to achieve the smallest anisometry and absence of notch conflict. Isometric zones were compared with the anatomic zones of the ACL. We also compared the position of the transplant determined by the computer and that determined according to the methods of conventional arthroscopy. An x-ray of each knee was obtained to compare with data in the literature concerning the advised position of the femoral and tibial holes with that established by the computer navigation system. Each knee was tested with KT1000 before and after surgery. Results: The precision of bone morphing was 0.1 mm. Anisometric curves were compatible with drilling holes calibrated to the size of the implant in four knees. The operator used the navigation system to determine the point of the femoral hole in six knees. The system then calculated the point of the tibial hole automatically eliminating the risk of notch conflict. The anisometric values were less than 2 mm; the distance roof of the notch/anterior border of the transplant was calculated as a function of the radius of the transplant (3.5–5 mm). The position of the tibial hole given by the computer system was always more medial than that given by the tibial aiming tools. The position of the femoral tunnel was always more anterior than that given by the femoral aiming tools. The postoperative KT1000 values were identical to the preoperative values. Discussion: Navigation without visualisation of the ACL is able to position the ACL in an isometric plane or better in an “anatomometric” plane, to inscribe the joint orifice of the tibial hole on the projection of the anterior arch of the notch on the tibial surface, to draw in real time the isometric femoral map on the notch in order to centre the joint orifice of the tibial hole as well as the corresponding laxity map, to indicate on the femoral notch the point which will be the centre of the joint orifice of the femoral hole, to draw the isometric curve of a given fibre and its corresponding laxity map, and to detect and allow the treatment of any transplant-notch conflict


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXII | Pages 31 - 31
1 Jul 2012
Wood A Hales R Bakker-Dyos J Chapman M Keenan A
Full Access

Previous Anterior Cruciate Ligament (ACL) reconstruction is currently a bar from entry to the Royal Marines and Royal Navy, whilst the British Army allows recruits to join if asymptomatic 18 months post ACL reconstruction. However current Royal Marines policy is to rehabilitate recruits who sustain an ACL disruption in training. We retrospectively analysed the rehabilitation times and pass out rate of Royal Marines who had an ACL disruption during recruit training over an 8 year period. 12 recruits sustained an ACL disruption during recruit training in the study period, giving an incidence of around 1.5/1000 recruits. 9 Patients underwent ACL repairs in training, with 1 patient leaving and rejoining post repair and later successfully passed out. 2 patients were treated conservatively. Of the 12 ACL sustained in training 8/12 (67%) passed out. None of the patients treated conservatively passed out. The mean time out of training for successful recruits was 51.6 weeks (95% CI 13.1) mean rehabilitation time post ACL reconstruction for successful recruits was 36.7 weeks (95% CI 12.5). Mean time to discharge for unsuccessful recruits 63.2 weeks (95% CI 42.4). In the operative group 1/10 left due to failure to return to training and 1/10 left through unrelated reasons. Current costing for recruit training is £1800 per week per recruit. ACL injuries are not common in Royal Marine Training, and reconstruction is not a bar to completing Royal Marine basic training. We estimate that it costs around £100,000 per-injured recruit, to maintain a policy of rehabilitating ACL injured recruits in Royal Marines training. Further research into the long-term employability or Royal Marines sustaining an ACL injury in training is required


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 233 - 233
1 May 2012
Hohmann E Tay M Tetsworth K Bryant A
Full Access

Given their role in reducing anterior tibial translation, the recruitment patterns and viscoelastic properties of the hamstring muscles have been implicated as neuromuscular factors contributing to the ACL gender bias. Nevertheless, it is uncertain whether patterns of aberration displayed by the female neuromuscular system significantly alters the antagonist moments generated by the hamstrings during maximal effort knee extension. The purpose of the current study was to examine the effect of gender on hamstring antagonist moments in order to explain the higher ACL injury rates in females. Eleven females (age 30.6 ± 10.1 years, mass 62.1± 6.9 kg, height 165.9 ± 4.6) and 11 males (age 29.0 ± 8.2 years, mass 78.6± 14.4 kg, height 178.5± 6.2) were recruited as subjects. Surface electrodes were placed over the semitendinosus (ST) and biceps femoris (BF) muscles of the dominant and non-dominant limbs. Each subject performed two sets of five maximal extension and flexion repetitions at 180-1. EMG, isokinetic torque and knee displacement data were sampled at 1000Hz using an AMLAB data acquisition system. Average hamstring antagonist torque data across the range of knee flexion for female subjects was significantly higher (%Diff=24%) than for the male control subject. Statistical analyses revealed a significant main effect of gender (F = 4.802; p = 0.036). Given that females possess a more compliant ACL and hamstring musculature, compared with their male counterparts, an augmented hamstring antagonist may represent a compensatory neuromuscular strategy to increase knee stiffness to control tibial translation and ACL strain. The results of this project suggest that it is unlikely that gender-related differences in hamstring antagonist torque is one of the predisposing factors contributing to the higher ACL injury rates in females


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 445 - 445
1 Oct 2006
Kendoff D Meller R Marquard S Citak M Geerling J Krettek C Hüfner T
Full Access

Tibial rotation and translation provide important stability parameters after ACL reconstruction. An accurate tool for a combined pre- intra- and postoperative stability measurement is not in clinical use so far. Navigation of the drill canals for the ACL placement and evaluation of possible impingement problems has been introduced for some years already, while measurement of the tibial translation and rotation is only available for a short time and only available for a few navigation modules. Navigation provides an accuracy of 1mm/1°, therefore navigated measurement of tibial rotation and translation were evaluated in this study with a new developed mechanical device and directly compared to conventional measurement techniques. Accuracy of navigation was compared with the KT1000 for the anterior-posterior (AP) translation and to a new developed goniometer tool concerning the rotational range of motion. Comparative tests included plastic whole leg models and specimens. Tests were repeated with intact and dissected ACL′s. A conventional navigation system (Vector Vision, Brainlab, Germany) was used in all cases. This included software developed for fluoroscopy based navigated ACL reconstruction. The following knee kinematics were detectable with the navigation system: Flexion/Extension degrees of the knee joint (°); AP translation of the tibia in relation to the femur (mm); Axial tibial rotation relative to the femur (°). Validation of Navigation: first neutral tibial rotation was defined and marked in the knee joint in neutral position. All rotational measurements were done with a new developed goniometer tool and compared to the navigated technique. Then the knee was rotated externally until 45° (maximum) and internally 45° (maximum), by single 2.5° steps. These measurements were repeated in 0°, 30°, 60° and 80° knee flexion. All tests were repeated three times and performed by 3 different observers. A total of 1296 measurements were done. Measurements of the tibial translation were compared with the KT 1000 for the specimen testing. Results revealed: accurate navigated measurement of tibial rotation in plastic and specimen models; variation of absolute AP translation values between KT1000 and navigation; variation of the AP translation corresponding to the ACL condition; increased range of total tibial rotation after dissecting the ACL compared to the intact ligament. Restoration of the rotational stability and limiting of the AP translation is necessary to provide normal knee kinematics after ACL reconstructions. Intraoperative measurements of these stability parameters are demanding and so far not established with navigation systems or conventionally. As our results show, navigation offers an accurate technique for measurement of the AP translation and rotation of the knee with intact and dissected ACL’s under laboratory conditions. General use in the evaluation of a successful ACL reconstruction becomes possible intraoperative and might be reproducible for further measurements. Clinical studies are needed to improve our results


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 278 - 278
1 Jul 2011
Fuentes A Mezghani N Hagemeister N de Guise JA
Full Access

Purpose: Gait analysis has become an innovative approach to assess the biomechanical adaptations due to an ACL injury. However, interpreting the large amount of data collected often requires an expert. Therefore, there is a need to develop an automatic method capable to distinguish kinetic pattern of an ACL deficient patients from an asymptomatic population. Method: 26 ACL deficient patients and 30 asymptomatic participants took part in a treadmill gait analysis. 3D ground reaction forces (vertical, medio-lateral and anterior-posterior) were collected using the ADAL 3D treadmill. Features were extracted from the 3D ground reaction forces as a function of time and then classified by the nearest neighbour rule using a wavelet decomposition method. The classification method was tested on our data base of 56 participants. Results: The proposed classification method obtained an accuracy of 90%. The classification accuracy per class was higher for the ACL deficient group allowing classifying correctly 25 out of 26 ACL deficient patient. 25 out of the 30 asymptomatic participants were properly classified. Conclusion: This study shows that an automatic objective computer method could be used in a clinical setting to help diagnose an anterior cruciate ligament injury during a gait analysis evaluation. Future studies should apply this method on a larger database including data from patients with other musculoskeletal pathologies to help diagnose other injuries


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 391 - 392
1 Sep 2009
Jenny J Ciobanu E Boeri C
Full Access

Anterior cruciate ligament (ACL) reconstruction allows overall good results, but there is still a significant rate of failure. It is well accepted that the main reason for ACL reconstruction failure is a misplacement of tibial or femoral tunnels. Conventional techniques rely mainly on surgical skill for intra-operative tunnel placement. It has been demonstrated that, even by experienced surgeons, there was a significant variation in the accuracy of tunnel placement with conventional techniques. Navigation systems might enhance the accuracy of ACL replacement. 10 cadaver knees with intact soft-tissue and without any intra-articular abnormalities were studied. We used a non image based navigation system (OrthoPilot ®, Aesculap, Tuttlingen, FRG). Localizers were fixed on bicortical screws on the distal femur and on the proximal tibia. Both kinematic and anatomic registration of the knee joint were performed by moving the knee joint in flexion-extension and palpating relevant intra- and extra-articular landmarks with a navigated stylus. The most anterior, posterior, medial and lateral point of both tibial and femoral attachment of the ACL were marked with metallic pins. The navigated stylus was positioned on these points, and the system recorded its position in comparison to the bone contours. Subsequently, we performed conventional plain AP and lateral X-rays and a CT-scan, and measured the position of the pins in comparison to the bone contours. Finally, all measurements were made again with a caliper after disarticulating the knee joint. We calculated the center of the footprint as the mid-point between the four pins of both tibial and femoral attachment for each measurement technique. All measurements were expressed as percentages of the bone size to compensate for the different sizes. There were no significant difference in the paired measurements of the location of the ACL footprints on both femur and tibia between anatomic, radiographic, CT-scan and navigated measurements. There was a significant correlation between the paired measurements of the location of the ACL footprints on both femur and tibia with either measurement techniques. Anatomic measurement is the gold standard experimental technique for the positioning of the ACL foot-print, and CT-scan measurement is currently the gold standard technique in clinical situation. According to this reference, the position of ACL attachments on the tibia and on the femur can be accurately defined by the navigation system. Intra-operative measurement of the location of the bone tunnels during ACL replacement with this navigation system should be accurate as well


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 430 - 431
1 Nov 2011
Tada M Inui K Yoshida H Takei S Fukuoka S Matsui Y Yoshida K
Full Access

Good mid-term results of Oxford UKA (OxUNI) for anteromedial osteoarthritis (OA) were reported. The designers of prosthesis reported a 98% 10-year survival rate for a combined series of phase I and II, and these findings were supported by published results from other series, with 10-year survival ranging from 91% to 98%. In order to obtain good results, the designers of this prosthesis mentioned the importance of adhering to strict indication for OxUNI, especially only for OA cases with intact anterior cruciate ligament (ACL). OxUNI combined with ACL reconstruction (ACLR) is a viable treatment option for only young active patients, in whom the ACL has been primarily ruptured. On the other hand, it was not clear whether the result of OxUNI combined with ACLR for OA with secondary ruptured ACL was good. In this study we compare the short-term results of OxUNI combined with ACLR for OA with secondary ruptured ACL with that for usual OA with intact ACL. 382 OxUNI were performed at two hospitals by one surgeon between January 2002 and August 2005. Among those, 367 cases, followed over two years postoperatively (272 patients, women: 283, men: 84) were assessed. Follow up ratio was 96.1%. The mean patient age at the time of surgery was 72.0 (47~93) years. The mean follow-up period was 39.3 (24~67) months. Thirty three knees of OA were treated with OxUNI combined with ACLR, by using synthetic graft. Clinical results were assessed by the Oxford Knee Score (OKS) and active range of motion (ROM). Patients are asked a series of 12 questions, and their response scores range from 0 (worse) to 4 (best) for each, yielding an overall score range of 0–48. All living patients were contacted, and the status of the implant was established at the time of last follow from hospital records. We evaluate the survival rate for OxUNI with or without ACLR, using the endpoint of revision for any reason. The pre-and postoperative clinical scores were compared using the paired Student’s t-test. Survivor-ship curves were constructed using the Kaplan-Meier method, and survivorship between groups was compared using logrank and Wilcoxon methods. All analyses were performed using 95% confidence intervals and a P value of < 0.05 was considered significant. The mean OKS at final follow-up was 42.1 (preoperative; 21.7), and the mean active ROM was 125.2° (preoperative; 113.4°). OKS and active ROM were significantly improved. There were no significant differences in OKS and active ROM between OxUNI with ACLR and OxUNI with intact ACL. Fourteen knees among 367 knees were revised; nine for loosening of tibial component, four for dislocation of bearing and one for progression of lateral OA. Overall 5-year survival rate was 95.6%. When survival rate was assessed separately with or without ACLR, that of OxUNI with intact ACL was 96.7% and that of OxUNI with ACLR was 83.8%. There was significant worse survival rate between the two groups (P=0.0071). The 5-year survival rate for OxUNI with intact ACL was 96.7%, which was equivalent to those of original series from Oxford. However, 5-year survival rate for Oxford UKA with ACLR was 83.8% in our series. Four knees in nine of loosening of tibial component were replaced by OxUNI combined with ACLR. Therefore, even if ACL was reconstructed, the results of OxUNI for OA with secondary ruptured ACL was proved to be pessimistic. There was significantly worse survival rate for OxUNI with ACLR, compared with OxUNI with intact ACL. So we conclude that combined ACL reconstruction and OxUNI for anteromedial OA with secondary ruptured ACL is not recommended, which must be treated with TKA


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 358 - 358
1 Jul 2011
Efstathopoulos N Sourlas J Lazarettos J Nikolaou V Brilakis E Xypnitos F
Full Access

To evaluate the clinical outcome of arthroscopic treatment of ACL with an Achilles tendon allograft in patient with acute rupture. 22 patients, between 2003 and 2006, with acute rupture of ACL, were treated with an Achilles tendon allograft. The mean age was 26 years. Patients were evaluated before and after surgery and at the latest follow-up with Noulis-Lahmann test and Pivot shift test. We also used IKDC score, Lysholm score and one leg stance test and functional reach test. Patients were also evaluated with Cybex II + and with plain radiographies. The mean follow-up time was 3.5 years. 90% of the patients had a negative pivot shift test and 95% of the patients had a score at Noulis-Lahmann test +1. The mean value of IKDC score was 88 (62–100) and the mean time of Lysholm score was 91 (75–100). Until the latest follow-up there were no clinical sighs of inflammation or graft rejection. Radiologic evaluation revealed no sign of tunnel enlargement. We believe that the use of a fresh-frozen allograft in the treatment of acute ACL ruptures is an effective procedure for the restoration of ligamentous stability of the knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 2 - 2
1 Sep 2012
Piper D Halliday R Murray J Porteous A Robinson J
Full Access

Separation of the ACL into anteromedial (AM) and posterolateral (PL) fibre bundles has been widely accepted. The bundles act synergistically to restrain anterior laxity throughout knee flexion, with the PL bundle providing the more important restraint near extension and its obliquity better restraining tibial rotational laxity. 10% of ACL injuries involve isolated rupture to one of these bundles causing patients to present with instability symptoms or pain. As knowledge about the influence of the ACL bundles on knee kinematics has increased, isolated reconstruction of either PL or AM bundle has been advocated. However only one cohort study of 17 patients has been presented in the clinical literature. KOOS (Knee Injury and Osteoarthritis Outcome Score) and IKDC (International Knee Documentation Committee Form) scores at 1yr post op were obtained for 12 patients who had undergone isolated ACL augmentation between 2007 and 2009. These were compared with previously published outcome scores for standard ACL reconstruction procedures. In addition examination under anaesthesia (EUA) assessments were analysed to see if a pattern of laxity for isolated AM and PL rupture could be determined. There were 5 patients with isolated AM bundle rupture and 7 with isolated PL bundle rupture. EUA analysis demonstrated that patients with isolated PL bundle rupture had increased pivot shift and Lachman test laxity, whereas the AM bundle rupture group had increased laxity with the anterior drawer test. Compared to previously published IKDC scores, there were no difference between isolated bundle augmentation and standard ACL reconstruction. However the KOOS scores showed significantly increased Sports function scores which was significantly better in the isolated bundle augmentations (93/100 v's 74/100). Differences between isolated AM and PL bundle reconstructions were not distinguishable. Isolated ACL bundle tears make up a significant proportion ACL injuries. Although technically more difficult than standard ACL reconstruction, isolated bundle augmentation appears to result in improved sports function when compared to standard ACL reconstruction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 10 - 10
23 Jul 2024
Al-hasani F Mhadi M
Full Access

Meniscal tears commonly co-occur with ACL tears, and many studies address their side, pattern, and distribution. Few studies assess the patient's short-term functional outcome concerning tear radial and circumferential distribution based on the Cooper et al. classification. Meniscal tears require primary adequate treatment to restore knee function. Our hypothesis is to preserve the meniscal rim as much as possible to maintain the load-bearing capacity of the menisci after meniscectomy.

The purpose of this study is to document the location and type of meniscal tears that accompany anterior cruciate ligament (ACL) tears and their effect on patient functional outcomes following arthroscopic ACL reconstruction and meniscectomy.

This prospective cross-sectional observational study was conducted at AL-BASRA Teaching Hospital in Iraq between July 2018 and January 2020 among patients with combined ipsilateral ACL injury and meniscal tears. A total of 28 active young male patients, aged 18 to 42 years, were included. All patients were subjected to our questionnaire, full history, systemic and regional examination, laboratory investigations, imaging studies, preoperative rehabilitation, and were followed by Lysholm score 6 months postoperatively.

All 28 patients were males, with a mean age of 27 ± 0.14 years. The right knee was the most commonly affected in 20/28 patients (71.4%). The medial meniscus was most commonly injured in 11 patients, 7 patients had lateral meniscal tears, and 10 patients had tears in both menisci. The most common tear pattern of the medial meniscus was a bucket handle tear (36.4%), while longitudinal tears were the most frequent in the lateral meniscus (71.4%) (P-value = 0.04). The most common radial tear location was zone E-F (5/28, 17.8%), and the most common circumferential zone affected was the middle and inner third, reported in 50% of tears. Good and excellent outcomes using the Lysholm score after 6 months were obtained in 42.9% and 17.9% of patients, respectively. Better functional scores were associated with lateral meniscal tears, bucket handle tears, tears extending to a more peripheral vascular area, and if no more than one-third of the meniscus was resected (P-value = 0.002). Less favourable outcomes were reported in smokers, posterior horn tears, and when surgery was delayed more than 1 year (P-value = 0.03).

We conclude that there is a negative correlation between the amount of meniscus resected and functional outcome. Delayed ACL reconstruction increases the risk of bimeniscal tears. Bucket handle tears are the most common tears, mostly in the medial meniscus, while longitudinal tears are most common in the lateral meniscus. We recommend performing early ACL reconstruction within 12 months to reduce the risk of bimeniscal injuries.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 196 - 196
1 Sep 2012
Giannini S Buda R Di Caprio F Marco C Ruffilli A Vannini F
Full Access

ACL (anterior cruciate ligament) partial tears include various types of lesions, and an high rate of these lesions evolve into complete tears. Most of the techniques described in literature for the surgical treatment of chronic partial ACL tears, don't spare the intact portion of the ligament. Aim of this study was to perform a prospective analysis of the results obtained by augmentation surgery using gracilis and semitendinosus tendons to treat partial sub-acute lesions of the ACL. This technique requires an “over the top” femoral passage, which enables salvage and strengthening of the intact bundle of ACL. The study included 97 patients treated consecutively at our Institute from 1993 to 2004 with a mean injury-surgery interval of 23 weeks (12–39). Patients were followed up by clinical and instrumental assessment criteria at 3 months, 1 year and 5 years after surgery. Clinical assessment was performed with the IKDC form. Subjective and functional parameters were assessed by the Tegner activity scale. Instrumental evaluation was done using the KT-2000 instrument: the 30 pound passive test and the manual maximum displacement test were performed. We obtained good to excellent results in 95.9% of cases. We didn't observed recurrences in ligamentous laxity. We believe that the described technique has the advantage of being little invasive, compatible with the ACL anatomy, and enables very rapid functional recovery and return to sport


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 151 - 151
1 Apr 2005
Pandit H Beard D Jenkins C Thomas N Murray D Dodd C
Full Access

Introduction: Unicompartmental knee arthroplasty (UKA) is an increasingly popular procedure for young osteoarthritic patients whose age and activity levels preclude the use of a total knee arthroplasty (TKA). However, successful reconstruction using an unconstrained mobile bearing implant requires an intact and functioning ACL. Patients with isolated medial compartment OA and an absent ACL therefore provide a management dilemma for the treating surgeon. One option is to perform a combined ACL reconstruction and mobile bearing UKA. This paper presents early results of this new procedure using an Oxford UKA and ACL reconstruction using an autograft. Materials and Methods: Eleven patients who underwent one or two-staged ACL reconstruction and Oxford UKA for treatment of symptomatic medial compartment OA were reviewed at one year after surgery. The combined procedure required specific precautions and considerations; care had to be taken to place the tibial tunnel as far laterally as possible to avoid impingement of the graft by the tibial implant. Also, the presence of a posteromedial, rather than an anteromedial cartilage defect has the potential to reduce accuracy for placement of the initial tibial cut. Results: All patients were male with an average age of 49 years (range: 36 – 52) and mean follow up of 1.3 years. One patient needed revision to TKA due to infection. The objective and functional knee society scores improved pre to post operatively from 55 to 98, and 85 to 100, respectively. Conclusions: ACL reconstruction and simultaneous or staged UKA is a viable treatment option for patients with symptomatic medial compartment arthritis in whom the ACL is absent. Early results of this technically demanding procedure are encouraging but longer follow-up is required


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 77 - 77
1 Mar 2008
Miller D Forrester K Leonard C Salo P Bray R
Full Access

We examined the vasoconstrictive actions of neuropeptide Y (NPY) in the intact medial collateral ligament (MCL) of normal and anterior cruciate ligament (ACL) -deficient rabbit knees. Blood flow to the surgically exposed MCL was measured using high-resolution laser speckle imaging (LSI) before and after topical administration of NPY and the α. 1. -adrenoreceptor agonist phenylephrine. In control rabbit knees, dose-dependent vasopressor responses were significantly greater than those in ACL-deficient knees, where there was little or no vasoconstrictor response. We conclude that chronic ACL deficiency markedly changes the vascular physiology and pharmacology of the surrounding articular tissues. To determine the effect of chronic ACL-deficiency on the physiologic responses to the potent sympathetic vasoconstrictor NPY. Abrogation of the vasoconstrictor response to both NPY and phenylephrine indicates that chronic ACL deficiency induces major changes in the vascular physiology of associated articular tissues. This study is the first to examine the vasoregulatory role of NPY in the MCL of unstable knee joints using LSI. In control rabbits, topical administration of NPY produced dose-dependent vasopressor responses (maximal effect at 10. −10. mol NPY). In ACL-transected knees there was little or no response to NPY (Figure 1). BIBP 3226 (selective NPY-Y1 receptor antagonist) did not affect the constrictor response to NPY in normal tissue, indicating that a receptor other than Y-1 mediates the response. Many neuropeptides participate in the post-traumatic inflammatory response. The sympathetic-derived NPY helps regulate inflammatory responses, is a vasoconstrictor and stimulates angiogenesis. Rupture of the ACL induces inflammation, hyperaemia and angiogenesis in the MCL. These changes in vascular physiology induced us to study the effect of ACL-deficiency on the actions of NPY in the MCL. Unoperated control (n=6) and 6-week ACL-transected (n=5) adult rabbits were used. Under anaesthesia, the MCL was surgically exposed and tissue blood flow was measured in real time using LSI as various doses and combinations of NPY, phenylephrine, and BIBP 3226 were administered topically. Possible causes of the reduced vasoconstrictive response to both NPY and phenylephrine in the MCL after 6wk of ACL-deficiency include change in the distribution or functionality of their specific receptors or inactivation of the associated down stream signalling pathways. Funding: This work was supported by funding from the CIHR and the Alberta Heritage Foundation for Medical Research. Please contact author for tables and/or graphs


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 86 - 86
1 Mar 2009
Karim A Thomas J Edwards A Puddu G Thomas N Amis A
Full Access

Background: Several approaches to the ACL attachment and drilling methods exist, with little evidence of which method is the best. Hypothesis: The “Retrodrill” or an “inside-out” drilling technique result in uniform intra-articular tunnel mouths compared with standard “outside-in” conventional ACL drill bits. Study Design: Controlled laboratory study. Methods: Sixteen cadaveric knees were divided into Anterograde (A) and retrograde “Retrodrill” (R) groups and ACL tunnels drilled. The femoral tunnel mouths were moulded using PMMA, then Nylon rods of identical diameter containing 1mm diameter K-wires were inserted into the tunnels and AP and lateral X-rays taken. Matching laboratory experiments utilised 10 pig femurs and synthetic bone. Results: In group A, the mean difference between tunnels and their mouths was 1.6±0.5mm, compared with 0.3±0.2mm for Group R (p < 0.001). The mean femoral tunnel angulation in the sagittal plane for Group A was 45±10 degrees and 78±14 degrees for Group R (p< 0.001); and 30±12 degrees, and 71±12 degrees (p< 0.001) in the coronal plane respectively. There were similar ACL attachment hit rates from the groups. In porcine bone, tunnel mouth widening in the anterograde tibial group was 0.7±0.4mm, 0.04mm±0.1mm for the anterograde femoral group, and 0.06±0.1mm for the retrograde group (p< 0.001). In synthetic bone, the difference between the tunnels and their mouths was 0.8±0.8mm, 0.2±0.1mm and 0.1±0.1mm (p< 0.001) respectively. Conclusions: The “Retrodrill”, or an inside out antero-grade drilling technique, produced a more uniform tunnel with no difference in ACL attachment hits


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 54 - 54
1 Aug 2013
Breton D Leboucher J Burdin V Rémy-Néris O
Full Access

Introduction. The anterior cruciate ligament (ACL) is one of the most common ligament injuries. Several ACL reconstructions exist and are consequently performed. An accurate and comprehensive description of knee motion is essential for an adequate assessment of these surgeries, in terms of restoring knee motion. Methods. We propose to compare these reconstructions thanks to an index of articular coherence. This index measures the instantaneous state surface configurations during a motion. More specifically, this refers to the position between two articular surfaces facing each other. First of all, the index has to refer to a position known to be physiological. This initial position of the bones, named reference, directly results from the segmentation of CT scans. First we compute all distances between the two surfaces and then we compute the Cumulative Distribution Function (CDF). We process this way for each iteration of the motion. Then we obtain a batch of CDF curves which provide us qualitative information relative to the motion such as potential collisions or dislocations. The graph of all CDF curves is called Figure of Articular Coherence (FoAC). A good articular coherence is characterised by CDF which are close to the reference. This qualitative method is coupled to a quantitative one named Index of Articular Coherence (IoAC) which computes the Haussdorff distance between the temporal distributions and the reference. This distance has to be as low as possible. The tools were tested on cadaveric experiments of ACL reconstruction provided by Hagemeister et al, (1999). They recorded the knee flexion/extension motion in following situations: the intact knee, after ACL resection, after three methods of ACL reconstruction on the same knee (‘over-the-top’ method (OTT), two different two tunnel reconstructions (2 tunnel). Our method was used, for the time being, for one specimen. We compare different post-surgery kinematics thanks to the FoAC and IoAC. Results and discussion. Functions were well correlated to the reference, when considering flexion motion of the intact knee. Regarding the results of the FoAC after ACL resection, we observed that the functions evolve in the direction of decreasing distances more rapidly, compared to the intact knee. This means that both articular surfaces are close to collision when ACL is resected. Regarding the results of the IoAC for the different experimental situations, we observe that the highest index is obtained for the ACL resected knee. The OTT method has equivalent results to the intact knee and for both 2 tunnels reconstructions, the index values are higher than those obtained with the intact knee. This higher index can be explained by an over-constraint on the knee movement, the knee appears to be more stable but it can possibly rigidify the joint as well. Through the use of the FoAC and IoAC, we reached the same conclusions of Hagemeister's work in a way that is more intuitive than by using kinematic curves and angle values. Our tools can describe the instantaneous state of the joint and are able to compare kinematics corresponding to different types ACL reconstructions


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 459 - 459
1 Nov 2011
Waldman BJ
Full Access

We performed 112 primary total knee replacements in patients under the age of 50, using a unique implant designed to pivot laterally during range of motion. This design more closely approximates the motion of an ACL deficient knee and controls for the anterior translation typical of more traditional designs. Patients were followed prospectively for a minimum of 3 years (range, 36 to 54 months) All patients were rated both clinically and radiographically using Knee Society Scores, SF-36 and standard radiographic instruments. Patients also completed a validated questionnaire that examined activity level, functional outcomes and ability to return to sports. Patients were compared to case matched historical controls that received a traditional, medially pivoting or flat on flat knee design. The senior author performed all procedures using a minimally invasive technique with preservation of the quad tendon and accomplished without lateral release. Inclusion criteria were patients under 50 with documented, tricompartmental osteoarthritis. All patients received the same posterior cruciate retaining, laterally pivoting knee prosthesis. Implanted with cement. All patients had resurfacing of the patella performed. The patients were compared to a case matched group of patients that received a modern medially pivoting knee replacement design. At last follow up, the mean Knee Society functional score was 94. There were no infections, fractures or other major complications in this group. Patients reported quicker recovery of quadriceps function, return to walking without assistance and quicker return to vigorous sports such as tennis. Functional outcomes were statistically improved over historical controls. There was no loss of radiographic alignment or increased signs of loosening compared with historical standards on the most recent radiographs. Total knee arthroplasty using a ACL substituting device was functionally superior to medially pivoting devices in this patient population. Patients reported better quadriceps dependent activities such as stair climbing and getting up from a chair. They were able to participate in more active sports without late signs of loosening or osteolysis. The authors can recommend this design in younger patients interested in vigorous activity, but full evaluation of this prosthesis will require longer-term results


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 138 - 138
1 May 2016
Frame M
Full Access

Aim. The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Introduction. Placements of the femoral tunnels for ACL reconstruction have changed over the years 1,2. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be 3. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all, as it is an average 4. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint. Materials & Methods. We took a standard protocol MRI scan of a patient's knee without ACL injury transferred the DICOM files to a personal computer running OsiriX (Pixmeo, Geneva, Switzerland.) and analyzed it for a series of specific anatomical landmarks (fig1). These measurements and points were then utilized to create a 3D computer aided design (CAD) model of a custom guide. This was done using the 3D CAD program 123Design (Autodesk Ltd., Farnbourgh, Hampshire). This 3D model was then uploaded to an online 3D printing service and the physical guide was created in transparent acrylic based photopolymer, PA220 plastic (fig 2) and 316L stainless steel. The models created were then measured using vernier calipers to confirm the accuracy of the final guides. The models produced were accurate with no statistical difference in size and positioning of the center of the ACL footprint from the original computer model and to the position of the ACL from the MRI scans. The costs for the models 3D printed were £3.50 for the PA220 plastic, £15 for the transparent photopolymer and £25 for the 316L stainless steel. The time taken from MRI to delivery for the physical models was 7 days. Conclusion. This study serves as the first step and a proof of concept for the accurate creation of patient specific 3D printed guides for the anatomical placement of the femoral tunnel for ACL reconstruction. The guides were easy to create and produce taking only a week and with a cost of between £3.50 and £25


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 339 - 339
1 May 2009
Puddu G
Full Access

Arthroscopic controlled retrograde drilling of femoral and tibial sockets and tunnels using a specially designed cannulated drill pin and retrocutter (Arthrex Inc, Naples FL.) provides greater flexibility for anatomical graft placement and in revision cases avoids previous tunnels and intra osseus hardware. Inside out drilling of femoral and tibial sockets minimises incisions and eliminates intra articular cortical bone fragmentation of tunnels rims common to conventional antegrade methods. This technique is also ideal for skeletally immature patients since drilling and graft fixation through growth plates may be avoided. Initial tunnel-referencing cannulated drill guide pin placement is carried out from outside-in. This technique (out-in/in-out) combines the advantages of the two-incision and the one-incision technique. In fact it permits us, as in the two-incision technique, to drill a pin guide from outside to inside in order to obtain the correct anatomical insertion of the ACL, otherwise not reproducible from inside-out. Since November 2004 our preferred technique for hamstring (autogenous quadrupled semitendinosis/ gracilis) ACL reconstruction incorporates the above mentioned femoral socket creation. In recent years, arthroscopically assisted ACL reconstruction has become the procedure of choice. Initially, arthroscopic techniques required two incisions for outside-in drilling of bone tunnels, but there has been a trend toward using a single incision with inside-out of the femoral tunnel. Those who advocate the two-incision technique state that they do so primarily because they believe that the two-incision procedures makes accurate femoral tunnel placement easier. Harner found no difference in tunnel placement using the two techniques, while Schiavone found that the inside-out femoral tunnels were significantly more vertical in the one-incision procedure. We have performed two-incision ACL reconstruction routinely since 1977, with very favourable results. The recent variation in our technique affords a reduction in morbidity, associated with improved cosmesis and quicker post-operative recovery. One factor related to our success appears to be a more anatomically positioned femoral tunnel, which in our hands, is difficult to accomplish with the single incision trans-tibial femoral socket creation. The retro-drill technique allows preparation of the correct anatomical femoral and tibial socket or tunnel, either with a very small lateral skin incision or without any skin incisions if the surgeon is using an allograft, and appears to represent a promising future technique in ACL reconstruction


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 507 - 508
1 Oct 2010
Trouillet F Chouteau J Fessy M Moyen B
Full Access

Introduction: The anterior cruciate ligament (ACL) can be anatomically divided into two bundles: the anteromedial (AM) and the posterolateral (PL). These two bundles have unique contributions to load transfer across the knee joint. Material and Methods: We retrospectively reviewed the clinical results of a consecutive series of 25 patients who underwent partial ACL reconstruction. In 22 cases AM bundle reconstruction was performed, and in 3 patients isolated PL bundle reconstruction was performed. The 25 patients included 7 women and 18 men with an average age of 29.2 years at the time of surgery. Preoperative evaluation was conducted using manual Lachman test, pivot-shift tests, KT-1000, magnetic resonance imaging and passive stress radiographs of both knees. In all cases preoperative clinical evaluation was graded C as per the IKDC scoring system. The preoperative side-to-side anterior laxity measured by means of the KT-1000 was 5.8 mm in case of AM bundle rupture and 4.3 mm in case of PL bundle rupture. All the patients underwent single-bundle reconstruction of the ACL under arthroscopic assistance (one single incision technique). In case of AM bundle repair, the type of graft used was all autologous and included bone-patellar tendon-bone in 14 cases, 4-strand hamstring tendons in 5 cases and 2-strand hamstring tendons in 3 cases. In case of PL bundle repair, 2-strand hamstring tendons transplant was used in the 3 cases. Results: In all cases, postoperative clinical evaluation was graded A as per the IKDC knee examination scoring system. No abnormal sagittal laxity was found with the Lachman manual test. Postoperative IKDC knee subjective evaluation score averaged 81.3 % [58–95] at an average of 9 months follow-up. Postoperative side-to-side anterior laxity measured with KT-1000 averaged 0.46 mm in case of AM bundle rupture and 0.5 mm in case of PL bundle rupture. Postoperatively, all the patients had full extension of the knee. The flexion was the same as contra lateral knee in 92 % of the cases. We had no postoperative complication. Discussion: Diagnosis of partial ACL rupture is often difficult. If the AM bundle is torn, the Lachman manual test is soft and the pivot-shift test is more often equal or glide. If the Lachman manual test is intermediary between firm and soft and the pivot-shift test is clunk, PL rupture has probably occurred. The size of the graft was smaller than in one bundle procedures and was matched with the size of the bundle reconstucted. Peroperative technical difficulties were to preserve the healthy bundle and to drill the femoral tunnel in case of posterolateral bundle reconstruction. Conclusion: This study showed consistent postoperative results. If partial rupture of the ACL can be diagnosed, isolated AM or PL bundle reconstruction should be considered


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 68 - 68
1 Dec 2016
Nguyen D
Full Access

Background The minimum size required for a successful quadrupled hamstring autograft ACL reconstruction remains controversial. The risks of ACL re-tear in younger patients who tend to participate in a higher level of sports activity, and female athletes who have numerous predisposing factors, are poorly defined. Purpose To identify risk factors for graft re-tears within 2 years of ACL surgery. The hypotheses are that female sex, a smaller size graft, and younger patients will increase the odds of failure. Study Design Cohort Study. Level of evidence, 3. A cohort of 503 athletes undergoing primary, autograft hamstring ACL reconstruction, performed by a single surgeon using the same surgical technique and rehabilitation protocol, between September-December 2012, was followed for a total duration of 2 years. Return to play was allowed between 6 and 12 months post-surgery upon completion of functional testing. Exclusion criteria included infections, revisions, double bundle techniques, multi-ligament injuries, non-compliance, BTB/allografts/hybrid grafts. Primary outcome consisted of binary data (ACL graft re-tear or no tear) as measured on physical exam (Lachman and pivot shift) and MRI. Multivariate logistic regression statistical analysis with model fitting was used to investigate the predictive value of sex, age, and graft size on ACL re-tear. Secondary sensitivity analyses were performed on the adolescent subgroup, age and graft size as categorical variables, and testing for interactions among variables. Sample size was calculated based on the rule of 10 events per independent variable for logistic regression. The mean age of the 503 athletes was 27.5 (SD 10.6; range = 12–61). There were 235 females (47%) and 268 males (53%) with a 6 % rate of re-tears (28 patients; 17 females). Mean graft size was 7.9 (SD 0.6; range = 6–10). Univariate analyses of graft size, sex, and age only in the model showed that younger age (odds ratio [OR] = 0.86; 95% confidence interval [CI] = 0.80–0.93; P = .001] and smaller graft size (OR = 0.36; 95% CI = 0.18–0.70; P = .003) were significantly predictive of re-tear. Female sex was correlated with re-tear but was not significant (OR = 1.8; 95% CI = 0.84–3.97; P = .13). Multivariate analysis with all 3 variables in the model showed similar significant results. Graft size < 8 mm (OR = 2.95; 95% CI = 1.33–6.53; P = .008) and age < 25 (OR = 7.01; 95% CI = 2.40–20.53; P = .001) were significantly predictive of re-tear. Entire model was statistically significant (Omnibus test P = .001; Hosmer-Lemeshow statistic P = .68; Receiver Operating Curve [ROC] = 0.8). Surgeons should counsel their patients who are female, younger than 25 and with a graft size less than 8 mm accordingly and consider modifying their surgical or rehabilitation techniques to mitigate these re-tear risks


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 320 - 320
1 Jul 2014
Aframian A Jindasa O Khor K Vinayakam P Spencer S Jeer P
Full Access

Summary. Nearly one-third of patients in this series with an ACL rupture requiring reconstruction had evidence of MPFL injury. This should be considered when patients are seen, and when MRI scans are reviewed/reported. Introduction. The Medial Patello-Femoral Ligament (MPFL) is the largest component of the medial parapatellar ligamentous complex. The senior surgeon felt that there was an anecdotally high rate of MPFL injury amongst his patients undergoing Anterior Cruciate Ligament (ACL) repair, but no discussion of this in the present literature. Method. A literature search was performed; although there were both scanty radiographic and anatomical studies of the MPFL, we found no literature looking at ACL and MPFL concurrent injury rates. The Magnetic Resonance Imaging (MRI) scans of fifty consecutive ACL reconstruction patients were retrospectively reviewed. Two independent radiologists were asked to review the scans looking specifically for evidence of MPFL rupture or Injury. The degree of injury was rated as rupture or by degree of sprain as applicable. One patient was excluded due to motion artefact limiting certainty. Results. Of the remaining forty-nine patients, 35 (71%) were intact, but fourteen (29%) showed evidence of injury. Five (10%) had a low-grade sprain, six (12%) had high-grade sprain, and three (6%) had complete rupture. The radiologists also noted that there was some variation in scanning protocols, and those with fat suppressed scans had better diagnostic value; this offered an opportunity to change the scanning practice. Conclusion. Nearly one-third of patients in this series with an ACL rupture requiring reconstruction had evidence of MPFL injury. This should be considered when patients are seen, and when MRI scans are reviewed/reported. Further, we would suggest that fat suppression sequences are included as standard to improve imaging quality