header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2021
Pareatumbee P Yew A Koh JSB Howe TS Abidin SZ Tan MH
Full Access

Introduction and Objective

Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling.

Methods

Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A comparative analysis against literature was performed to validate the intact model. Statistical analysis of the peak von Mises stress values collected from predicted stress contour plots was performed using a one-way repeated measure of analysis of variance (with a Bonferroni post hoc test) using SPSS Statistics 26. The average change in stress of the resected models from the intact state were then determined.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 119 - 119
1 Dec 2013
Liau GZQ Tan MH
Full Access

Introduction

Published literature that examined pre-operative Body Mass Index (BMI) with Total Knee Arthroplasty (TKA) outcomes have shown conflicting data. Some show that higher BMI and is associated with poorer post-TKA function and HRQoL outcomes, but not others.

The aim of our analyses is to identify the relationship of pre-operative obesity with the outcomes of TKA, including physical and mental functional limitations.

Methods

We performed a prospective analysis of a consecutive series of 191 patients, who had underwent TKA from March 2006 to February 2011, performed by a single surgeon, at Singapore General Hospital, Singapore. Patients were eligible if they had met the following criteria: primary, unilateral TKA, using fixed bearing, posterior stabilized prostheses, under computer assisted surgery system. Patients were reviewed clinically at 6 months and 2 years post-operatively.

Patients were stratified into non-obese (BMI <30 kg/m2), mildly obese (BMI 30 to 35) and highly obese (BMI ≥35) groups. Outcome measures evaluated include: SF-36, Oxford knee score and Knee Society Score.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 16 - 16
1 Sep 2012
Bin Abd Razak HR Pang H Yeo SJ Tan MH Chong HC Lo NN
Full Access

Purpose

The purpose of this study was to compare joint line changes between posterior-stabilized (PS) and cruciate-retaining (CR) computer navigated total knee arthroplasties (TKA) and to evaluate the impact on functional outcome.

Background

Restoration of the native joint line has been a common goal in all TKA designs. Computer-navigated TKA in increasingly being favoured by many surgeons, due to increased precision and lesser complications. Few studies have reported the effect of computer navigated TKA on joint line restoration. It remains to be seen if the greater precision offered by computer-navigated TKA in restoration of joint line translates to improvement in functional outcome.