header advert
Results 21 - 28 of 28
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 110 - 110
1 Dec 2013
MacDonald D Kurtz S Kocagoz S Hanzlik J Underwood R Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Rimnac C
Full Access

Background:

Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads.

Questions/purposes:

We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 387 - 387
1 Dec 2013
Kurtz S MacDonald D Higgs G Gilbert J Klein GR Mont M Parvizi J Kraay M Rimnac C
Full Access

Introduction:

Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners.

The purpose of this study was to characterize the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates.

Patients & Methods:

386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 33 - 33
1 May 2013
Kraay M
Full Access

Arthritis of the hip is a relatively common problem in patients with neuromuscular disorders due to muscle imbalance around the hip from weakness, paralysis, contractures and spasticity. Neuromuscular disorders such as cerebral palsy, Parkinson's disease, poliomyelitis, previous cerebrovascular accident (CVA) and Charcot arthropathy have been considered by many to be relative contraindications to total hip arthroplasty (THA). The presence of certain anatomic abnormalities (excessive femoral anteversion, acetabular dysplasia, leg length discrepancy (LLD) and coax valga) and significant soft tissue contractures, muscle imbalance, and muscular weakness make THA a challenging surgical procedure in this patient population, and can predispose to dislocation and poor functional outcome following surgery. THA can, however, result in substantial pain relief and functional improvement in patients with significant hip arthritis and neuromuscular disorders, and can be safely performed, provided certain technical considerations are addressed.

The patient's motor strength and functional status (ambulatory vs. “sitter”) should be carefully assessed pre-operatively, since both of these factors may affect the choice of surgical approach and component position. Significant soft tissue contractures should be released at the time of surgery. Although these can be frequently performed “open,” percutaneous adductor tenotomy is occasionally necessary for patients with significant adduction contractures. Patients requiring significant soft tissue releases may benefit from 6 weeks of bracing to allow soft tissues to heal in appropriately and minimize risk of dislocation during this period of time.

Use of modular femoral components that allow for correction of excessive femoral anteversion, should be considered in patients with coexistent dysplasia and neuromuscular disease (i.e. CP or polio). Large femoral head components should also be considered in patients with increased risk factors for dislocation. Despite their obvious theoretical advantages, the use of large head metal on metal THAs should be used with extreme caution in view of growing concerns about these devices. Although constrained acetabular liners are associated with an increased risk of mechanical failure, their use should be strongly considered in patients with significant motor weakness or major soft tissue deficiencies. Meticulous soft tissue closure of the capsule of the hip is recommended, especially when performing THA through a posterior approach. Patients with neuromuscular disorders associated with spasticity and involuntary movements need to be optimally treated medically prior to and indefinitely after THA.

There are limited reports of outcomes following THA in patients with neuromuscular disorders, however some generalisations based on underlying diagnosis can be made. Patients with cerebral palsy and polio frequently have acetabular dysplasia, excessive femoral anteversion and LLD, and although durability does not seem to be a major concern, dislocation and instability is relatively common and needs to be addressed. Durability and instability do not appear to be major concerns in patients with Parkinsons disease, however, these patients have frequent medical complications perioperatively and have deterioration in function over time due to the progressive nature of their underlying disorder. Patients with previous CVA also appear to have acceptable durability and dislocation risk, but are at high risk of developing heterotopic ossification post-operatively. Patients with Charcot arthropathy or myelodysplasia are at high risk of instability and appear to have limited functional improvement following THA. As a result, the consensus of opinion is that THA is contraindicated in patients with Charcot arthropathy and myelodysplasia.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 14 - 14
1 May 2013
Kraay M
Full Access

The cemented acetabular component has been essentially abandoned, due to the reliable and durable fixation provided by bone ingrowth into cementless acetabular components of many different designs. A variety of porous surfaces including sintered beads, titanium fibermetal, plasma sprayed titanium, and ultraporous tantalum have been shown to result in significant osteointegration, and provide long term fixation of cementless acetabular components. New ultraporous metals will also likely prove to perform similarly, however, their advantages in the primary THA are unclear.

Most currently available cementless acetabular components rely on obtaining initial “interference” or “frictional” fit provided by relative underreaming. Many designs incorporate additional features such as screws, pegs, and fins to limit implant micromotion and augment initial fixation until early tissue ingrowth occurs. “Underreaming” by more than 1 mm has been associated with incomplete component seating and increased incidence of acetabular fracture. Knowledge of the geometry of the component by the surgeon is recommended, since some designs are elliptical and have a built-in degree of interference fit. Screws used to augment acetabular fixation in the primary THA can typically be restricted to the area of the acetabular dome (cluster configuration) and cups with multiple holes are usually unnecessary and may be undesirable as they allow access of wear debris to the acetabular implant-bone interface.

In order to minimize backside wear and dissociation of the acetabular liner, modular components need to have a well-designed locking mechanism. Retrieval studies have shown that the peripheral rim of the acetabular liner is most susceptible to oxidative degradation and the integrity of the locking mechanism in this area can be compromised with time. Non-modular, “one piece” components eliminate these concerns, but most of these designs rely on initial frictional fit alone for stability. In the event that the position of a nonmodular component needs to be changed intra-operatively, the quality of frictional fit after repositioning can be diminished and may not be sufficient for implant stability. Modular components that incorporate screws, allow for acetabular component repositioning and adjunctive fixation with screws. Many newer acetabular component designs can accommodate a modular liner for either a metal on polyethylene, ceramic on ceramic or metal on metal bearing.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 232 - 232
1 Mar 2013
Kurtz S MacDonald D Kocagoz S Tohfafarosh M Parvizi J Klein GR Lee G Marshall A Mont M Kraay M Stulberg B Rimnac C
Full Access

Introduction

Sequentially annealed highly crosslinked polyethylenes (HXLPEs) were introduced in total knee replacement (TKR) starting in 2005 to reduce wear and particle-induced osteolysis. Few studies have reported on the clinical performance of HXLPE knees. In this study, we hypothesized that due to the reduced free radicals, sequentially annealed HXLPE would have lower oxidation levels than gamma inert-sterilized controls.

Methods

145 tibial components were retrieved at consecutive revision surgeries at 7 different surgical centers. 74 components were identified as sequentially annealed HXLPE (X3, Stryker) while the remainder (n = 71) were conventional gamma inert sterilized polyethylene. The sterilization method was confirmed by tracing the lot numbers by the manufacturer. The conventional inserts were implanted for 1.7 years (Range: 0.0–9.3 years), while the X3 components were implanted 1.1 years (Range: 0.0–4.5 years). Surface damage was assessed using the Hood method. Oxidation analysis was performed in accordance with ASTM 2102 following submersion in boiling heptane for 6 hours to remove absorbed lipids. 30 of the conventional and 29 of the HXLPE inserts were available for oxidation analysis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction

Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States.

Methods and Materials

106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 107 - 107
1 Mar 2013
Kurtz S MacDonald D Parvizi J Klein GR Lee G Marshall A Mont M Kraay M Stulberg B Malkani AL Rimnac C
Full Access

Introduction

The purpose of this multicenter study was to assess the oxidative stability, mechanical behavior, wear and reasons for revision of 2nd generation sequentially annealed HXLPE, X3, and compare it to 1st generation XLPE, Crossfire. We hypothesized that X3 would exhibit similar wear rates but lower oxidation than Crossfire.

Methods

182 hip liners were consecutively retrieved during revision surgeries at 7 surgical centers and continuously analyzed over the past 12 years in a prospective, multicenter study. 90 were highly crosslinked and annealed (Crossfire; Implanted 4.2±3.4 years, max: 11 years), and 92 were highly crosslinked and annealed in 3 sequential steps (X3; Implanted 1.2±1.5 years; max: 5 years). Oxidation was characterized in accordance with ASTM 2102 using transmission FTIR performed on thin sections (∼200μm) from the superior/inferior axis. Mechanical behavior was assessed via the small punch test (ASTM 2183).


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 4 | Pages 636 - 640
1 Jul 1994
Kraay M Figgie M Inglis A Wolfe S Ranawat C

We used survival analysis to evaluate 113 consecutive semiconstrained total elbow arthroplasties (TEAs) in 95 patients at a maximum follow-up of 99 months. Our criteria for failure were mechanical malfunction, revision for any reason, and deep infection. The primary diagnosis was inflammatory arthritis in 86 elbows, post-traumatic arthritis in 6, supracondylar nonunion or fracture in 12, osteoarthritis in 2 and other causes in 3. Seven failures were due to deep infection, and five of these had a primary diagnosis of inflammatory arthritis. Eight failures were revised or had revision recommended for aseptic loosening, and six of these were in patients with post-traumatic arthritis or supracondylar nonunion. The cumulative survival for TEAs performed for post-traumatic arthritis, fractures or supracondylar nonunion was 73% at three years and 53% at five years, significantly worse than the cumulative three- and five-year survivals of 92% and 90%, respectively, for patients with inflammatory arthritis. TEA with a semiconstrained prosthesis appears to have a satisfactory survival in selected patients with arthritic disorders. The incidence of deep infection was reduced by improvements in surgical technique and postoperative management, and the routine use of antibiotic-impregnated cement. The incidence of aseptic loosening was low, except in patients with supracondylar nonunion or post-traumatic arthritis.