Advertisement for orthosearch.org.uk
Results 1 - 20 of 48
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 916 - 923
1 Sep 2024
Fricka KB Wilson EJ Strait AV Ho H Hopper, Jr RH Hamilton WG Sershon RA

Aims

The optimal bearing surface design for medial unicompartmental knee arthroplasty (UKA) remains controversial. The aim of this study was to compare outcomes of fixed-bearing (FB) and mobile-bearing (MB) UKAs from a single high-volume institution.

Methods

Prospectively collected data were reviewed for all primary cemented medial UKAs performed by seven surgeons from January 2006 to December 2022. A total of 2,999 UKAs were identified, including 2,315 FB and 684 MB cases. The primary outcome measure was implant survival. Secondary outcomes included 90-day and cumulative complications, reoperations, component revisions, conversion arthroplasties, range of motion, and patient-reported outcome measures. Overall mean age at surgery was 65.7 years (32.9 to 94.3), 53.1% (1,593/2,999) of UKAs were implanted in female patients, and demographics between groups were similar (p > 0.05). The mean follow-up for all UKAs was 3.7 years (0.0 to 15.6).


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims

A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting.

Methods

This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 252 - 259
1 May 2022
Cho BW Kang K Kwon HM Lee W Yang IH Nam JH Koh Y Park KK

Aims

This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA).

Methods

3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


Bone & Joint Research
Vol. 11, Issue 4 | Pages 226 - 228
20 Apr 2022
Hiranaka T Suda Y Saitoh A Koide M Tanaka A Arimoto A Fujishiro T Okamoto K


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims

The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray.

Methods

In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims

Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level.

Methods

A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 861 - 867
1 Jul 2020
Hiranaka T Yoshikawa R Yoshida K Michishita K Nishimura T Nitta S Takashiba K Murray D

Aims

Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless tibial components could safely be used in Japanese patients based on the size and shape of the tibia.

Methods

The study involved 212 cementless Oxford UKAs which were undertaken in 174 patients in six hospitals. The medial eminence line (MEL), which is a line parallel to the tibial axis passing through the tip of medial intercondylar eminence, was drawn on preoperative radiographs. Knees were classified as having a very overhanging medial tibial condyle if this line passed medial to the medial tibial cortex. They were also classified as very small if a size A/AA tibial component was used.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 925 - 932
1 Jul 2020
Gaugler M Krähenbühl N Barg A Ruiz R Horn-Lang T Susdorf R Dutilh G Hintermann B

Aims

To assess the effect of age on clinical outcome and revision rates in patients who underwent total ankle arthroplasty (TAA) for end-stage ankle osteoarthritis (OA).

Methods

A consecutive series of 811 ankles (789 patients) that underwent TAA between May 2003 and December 2013 were enrolled. The influence of age on clinical outcome, including the American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot score, and pain according to the visual analogue scale (VAS) was assessed. In addition, the risk for revision surgery that includes soft tissue procedures, periarticular arthrodeses/osteotomies, ankle joint debridement, and/or inlay exchange (defined as minor revision), as well as the risk for revision surgery necessitating the exchange of any of the metallic components or removal of implant followed by ankle/hindfoot fusion (defined as major revision) was calculated.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims

The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation.

Methods

We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims

This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty.

Materials and Methods

Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 111 - 111
1 Apr 2019
Verstraete M Conditt M Lieffort D Hazin W Trousdale J Roche M
Full Access

Introduction and Aims. Sensor technology is seeing increased utility in joint arthroplasty, guiding surgeons in assessing the soft tissue envelope intra-operatively (OrthoSensor, FL, USA). Meanwhile, surgical navigation systems are also transforming, with the recent introduction of inertial measurement unit (IMU) based systems no longer requiring optical trackers and infrared camera systems in the operating room (i.e. OrthAlign, CA, USA). Both approaches have now been combined by embedding an IMU into an intercompartmental load sensor. As a result, the alignment of the tibial varus/valgus cut is now measured concurrently with the mediolateral tibiofemoral contact load magnitudes and locations. The wireless sensor is geometrically identical to the tibial insert trial and is placed on the tibial cutting plane after completing the proximal tibial cut. Subsequently, the knee is moved through a simple calibration maneuver, rotating the tibia around the heel. As a result, the sensor provides a direct assessment of the obtained tibial varus/valgus alignment. This study presents the validation of this measurement. Method. In an in-vitro setting, sensor-based alignment measurements were repeated for several simulated conditions. First, the tibia was cut in near-neutral alignment as guided by a traditional, marker-based surgical navigation system (Stryker, MI, USA). Subsequently, the sensor was inserted and a minimum of five repeated sensor measurements were performed. Following these measurements, a 3D printed shim was inserted between the sensor and the tibial cutting plane, introducing an additional 2 or 4 degrees of varus or valgus, with the measurements then being repeated. Again, for each condition, a minimum of five sensor measurements were performed. Following completion of the tests, a computed tomography (CT) scan of the tibia was obtained and reconstructed using open source software (3DSlicer). Results. By identifying anatomic landmarks on the 3D reconstructed tibia and fibula, the actual tibial coronal alignment of 0.43° valgus was obtained (Figure 1a), in close agreement with the one degree valgus alignment reported by the optical navigation system. Both reference values match well with the 1.16° valgus (SD: 0.91°) calculated by the IMU- based sensor system. When introducing the shims, the sensor consistently predicts the relative angular changes, with a maximum relative difference between the expected and measured condition of 1.29°. For each condition, the standard deviation remained small, with values ranging from 0.27° to 0.60° based on at least five repeated measures (Figure 1b). Conclusion. In conclusion, this paper demonstrates that sensor technology can be used to evaluate tibial coronal alignment, with an accuracy in line with available 3D measurement systems. The authors recognize however the need for further validation, currently being undertaken


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 95 - 95
1 Apr 2019
Ku M
Full Access

Purpose. Total knee replacement is the one of the most performed surgeries. However, patient's satisfaction rate is around 70–90 % only. The sacrifice of cruciate ligament might be the main reason, especially in young and active patients. ACL stabilizes the knee by countering the anterior displacing and pivoting force, absorbs the shock and provides proprioception of the knee. However, CR knees has been plagued by injury of PCL during the surgery and preservation of the ACL is a demanding technique. Stiffness is more common comparing to PS designed knee. To insert a tibial baseplate with PE is usually thicker than 8 mm comparing to 2–4 mm of removed tibial bone. The stuffing of joint space may put undue tension on preserved ACL and PCL. Modern designed BCR has been pushed onto market with more sophisticated design and instrumentation. However, early results showed high early loosening rate. Failure to bring the tibia forward during cementing may be the main cause. The bone island where ACL footprint locates is frequently weak, intraoperative fracture happens frequently. A new design was developed by controlled elevation and reattachment of the ACL footprint to meet all the challenges. Method. A new tibial baseplate with a keel was designed. The central part of the baseplate accommodates elevated bony island with ACL footprint. The fenestrations at the central part is designed for reattachment of bony island under proper tension with heavy sutures and fixed at anterior edge of the baseplate in suture bridge fashion and also for autograft to promote bony healing after reattachment. The suture bridge method has been used by arthroscopists for ACL avulsion fracture without the need of immobilization. The elevation of bony island release the tension in the ACL which come from stuffing of baseplate and PE insert and greatly facilitate cementing of the baseplate. The keel improve the weakness of traditional U shape design of BCR knees. Instead of keeping the bony island intact by separately cutting the medial and lateral tibial plateau in BCR knees in the past, we choose to saw the tibial plateau in one stroke as in PS knees, then removes the two condyles. The bony island includes the footprint both ACL and PCL. The central part of tibial baseplate will push the bony island upward which release the undue tension in the cruciate ligaments. Summary. We proposed a new solution for the kinematic conflict in the present bi-cruciate knee designs by elevation and re- attachment of bony island with ACL footprint at the same time simplify the ACL preservation. The simple tibial cutting procedure also facilitate the process. The technique protects PCL from injury during tibial bone cutting in CR knees. We believe the new BCR design has the potential to replace CR knee in term of function and longevity in the future


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 143 - 143
1 Apr 2019
Nizam I Batra A
Full Access

BACKGROUND. We conducted this study to determine if the pre-surgical patient specific instrumented planning based on Computed tomography scans can accurately predict each of the femoral and tibial resections. The technique helps in optimization of component positioning and hence overall alignment thereby reducing errors. This makes it less invasive, more efficient and cost effective. The surgical plan in combination with the cutting guides determine the resection thickness, component size, femoral rotation and femoral and tibial component alignment. Several clinical studies have shown that PSI is safe, accurate and reproducible in primary TKA. Accurate preparation of the femoral and tibial surfaces will determine alignment and component positioning and this in turn reflects on function and longevity. METHODS. The study was conducted prospectively between May 2016 and December 2017 in our institution. Patients admitted over a period of these twenty months were included in the study. Patients with primary or secondary osteoarthritis (OA) and inflammatory arthritis who were suitable to undergo patient-specific TKA were included in the study. Patients with conventional instrumented TKR and those with significant deformities requiring constrain including valgus or varus of greater than 20 degrees with incompetent lateral or medial collateral ligaments were excluded from the study along with revisions of partial knee to TKA using PSI blocks. Prophecy® Preoperative Navigation 3D printed Guides were used for the Evolution Medial Pivot knee replacement system (. Microport Orthopaedics (Arlington, TN 38002, USA)). in all cases. The operating surgeon measured all the resections made (4 femoral and 2 tibial) using vernier calipers intraoperatively. These measurements were then compared with the preoperative CT predicted bone resection surgical planning. The senior author (IN) also designed markings on the tibial cutting blocks to improve accurate placement on the tibia and further markings on the femoral cutting blocks to ensure accurate positioning and rotational alignment improving accuracy of the cuts and femoral rotation. Further markings by senior surgeon (IN) on the pre-operative plans included tibial rotational plans in relation to the tibial tubercle. RESULTS. A total of 3618 readings were calculated from 201 knees (105 right and 96 left). There were 112 females and 76 males, and the average age was 67.72 years (44 to 90 years) and average BMI 32.3 (25.1 to 42.3). The surgical time ranged from 46 to 102 minutes with a mean operating time of 62 minutes. All Femoral and Tibial blocks sat accurately on the bony surfaces before being pinned. 94% of all collected resection readings were below the error margin of ≤1.5 mm of which 90% showed resection error of ≤1mm. Mean error of different resections were ≤0.60 mm (P ≤ 0.0001). In 24% of measurements there were no errors or deviations from the templated resection (0.0 mm). CONCLUSION. The 3D printed cutting blocks with slots for jigs accurately predict bone resections in PSI total knee arthroplasty which would directly affect component positioning and hence longevity and function


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 53 - 53
1 Oct 2018
Walker PS Einhorn T Schwarzkopf R Hooper J Werner J Fernandez E
Full Access

Introduction. In major orthopaedic departments, typically several total knee systems are used. Each system requires several sets of instruments, each set with many trays of complicated and expensive parts. The logistics and costs of maintainance are considerable. Our overall goal is to investigate the feasibility of autoclavable single-use 3D printed instruments made from a polymeric material, used for any type of total knee design. The procedure will be standardized and adjustments easy to implement. Each set will be packaged individually, and used for a single case. There are many aspects to this study; in this part, the aims are to identify suitable materials for autoclavability and strength, and then to compare the accuracy of a novel design of 3D printed tibial cutting guide with a current metallic guide. Methods. Test samples were designed to simulate shapes in current instruments, such as mating pegs and holes, threaded screws, and slotted blocks. Each set was produced in biocompatible materials, ABS-M30i, VeroClear (MED610), Ultem1010, and Nylon 12. Each part was laser scanned, and then imaged virtually using a reverse engineering software (GeoMagic). Manual measurements of key dimensions were also made using calipers. The parts were autoclaved using a standardized protocol, 30 minutes at 250° F. All parts were re-scanned and measured to determine any changes in dimensions. To test for strength and abrasion resistance, the slotted blocks were pinned to sawbones model tibias, and an oscillating saw used to cut through the slot. A compact 3D printed tibial cutting guide was then designed which fitted to the proximal tibia and allowed varus-valgus, tibial slope and height adjustments. A small laser attached to the guide projected to a target at the ankle. Tests were made on 20 sawbones, and compared with 20 with a standard metal cutting guide. Digitization was used to measure the angles of the cuts. Results. Prior to autoclaving, the mating parts of all parts were congruent, except for Nylon 12 which had processing debris in slots and screw threads. The ABS-M30i shapes became grossly deformed after autoclaving. The other materials experienced only small changes in dimensions without loss of overall shape, but the slot of the Nylon 12 block was stenotic, 1.4 mm compared to 0.9 mm before autoclaving. In saw blade testing, the VeroClear block fractured through the corner of the slot, while the Nylon 12 block deformed due to heating. The Ultem1010 block produced a small amount of debris, but maintained its shape without any structural damage. In the tests of the tibial cutting guide the 3D printed laser-guided tibial cutting guide resulted in a mean absolute error of 1.72°±1.31° and 1.19°±0.93°, for the tibial slope and varus-valgus respectively. For the conventional guides, these values were 3.78°±1.98° and 2.33°±0.98°, respectively. These measurements were found to be statistically significant with p values of 0.004 and 0.001, respectively. Conclusions. Thus far, apart from patient specific cutting guides and trial components, 3D printing has had limited applications in total knee surgery. As cost containment remains prominent, the use of 3D printing to produce standardized instruments may become viable. These instruments would not require pre-op planning such as CT or MRI, yet allow patient-specific angular settings. Our results indicated that Ultem1010 is a promising material, while a novel tibial cutting guide showed higher accuracy than standard, as well as being quicker to use. These initial tests indicated the viability of 3D printed instruments, but further work will include design and evaluation of the other cutting guides, manufacturing logistics such as in-house or company- based, and economics


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1596 - 1602
1 Dec 2017
Dunbar MJ Laende EK Collopy D Richardson CG

Aims

Hydroxyapatite coatings for uncemented fixation in total knee arthroplasty can theoretically provide a long-lasting biological interface with the host bone. The objective of this study was to test this hypothesis with propriety hydroxyapatite, peri-apatite, coated tibial components using component migration measured with radiostereometric analysis over two years as an indicator of long-term fixation.

Patients and Methods

A total of 29 patients at two centres received uncemented PA-coated tibial components and were followed for two years with radiostereometric analysis exams to quantify the migration of the component.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 631 - 639
1 Nov 2017
Blyth MJG Anthony I Rowe P Banger MS MacLean A Jones B

Objectives

This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group.

Methods

A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.